Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_2_a2, author = {Czornik, A. and Jurga\'s, P.}, title = {Some properties of the spectral radius of a set of matrices}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {183--188}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/} }
TY - JOUR AU - Czornik, A. AU - Jurgaś, P. TI - Some properties of the spectral radius of a set of matrices JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 183 EP - 188 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/ LA - en ID - IJAMCS_2006_16_2_a2 ER -
%0 Journal Article %A Czornik, A. %A Jurgaś, P. %T Some properties of the spectral radius of a set of matrices %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 183-188 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/ %G en %F IJAMCS_2006_16_2_a2
Czornik, A.; Jurgaś, P. Some properties of the spectral radius of a set of matrices. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 183-188. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/
[1] Berger M.A. and Yang Wang (1992): Bounded semigroups of matrices. -Lin. Alg. Appl., Vol. 166, No. 1, pp. 21-27.
[2] Czornik A. (2005): On the generalized spectral subradius. - Lin. Alg. Appl., Vol. 407, No. 1, pp. 242-248.
[3] Daubechies I. and Lagarias J.C. (1992a): Two-scale difference equation II. Infinite matrix products, local regularity bounds and fractals. - SIAM J. Math. Anal., Vol. 23, No. 4, pp. 1031-1079.
[4] Daubechies I. and Lagarias J.C (1992b): Sets of matrices all infinite products of which converge. - Linear Alg. Appl., No. 161, pp. 227-263.
[5] Elsner L. (1995): The generalized spectral radius theorem: An analytic-geometric proof. - Lin. Alg. Appl., Vol. 220, No. 1, pp. 151-159.
[6] Gol'dsheid I.Ya. and Margulis G.A. (1989): Lyapunov indices of a product of random matrices. - Russian Math. Surveys, Vol. 44, No. 1, pp. 11-71.
[7] Golub G.H. and Loan C.F.V. (1996): Matrix Computations. - 3rd Ed. Baltimore, Johns Hopkins University Pres.
[8] Gripenberg G. (1996): Computing the joint spectral radius. - Lin. Alg. Appl., Vol. 234, No. 1, pp. 43-60.
[9] Guglielmi N. and Zennaro M. (2001): On the asymptotic properties of a family of matrices.-Lin. Alg. Appl., Vol. 322, No. 1-3, pp. 169-192.
[10] Gurvits L. (1995): Stability of discrete linear inclusion. - Lin. Alg. Appl., Vol. 231, No. 1, pp. 47-85.
[11] Horn R.A. and Johnson C.R. (1985): Matrix Analysis. - Cambridge, MA: Cambridge Univ. Press.
[12] Jia R.Q. (1995): Subdivision schemes in Lp spaces. - Adv. Comput. Math., Vol. 3, No. 1, pp.309-341.
[13] Michelli C.A. and Prautzsch H. (1989): Uniform refinement of curves. - Lin. Alg. Appl., Vol. 114 and 115, No. 1, pp. 841-870.
[14] Rota G.C. and Strang G. (1960): A note on the joint spectral radius. -Inag. Math. Vol. 22, No. 1, pp. 379-381.
[15] Shih M.H. (1999): Simultaneous Schur stability. - Lin. Alg. Appl., Vol. 287, No. 1-3, pp. 323-336.