Some properties of the spectral radius of a set of matrices
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 183-188.

Voir la notice de l'article provenant de la source Library of Science

In this paper we show new formulas for the spectral radius and the spectral subradius of a set of matrices. The advantage of our results is that we express the spectral radius of any set of matrices by the spectral radius of a set of symmetric positive definite matrices. In particular, in one of our formulas the spectral radius is expressed by singular eigenvalues of matrices, whereas in the existing results it is expressed by eigenvalues.
Keywords: spectral radius, spectral subradius, symmetric matrices
Mots-clés : promień spektralny, podpromień spektralny, macierz symetryczna
@article{IJAMCS_2006_16_2_a2,
     author = {Czornik, A. and Jurga\'s, P.},
     title = {Some properties of the spectral radius of a set of matrices},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {183--188},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/}
}
TY  - JOUR
AU  - Czornik, A.
AU  - Jurgaś, P.
TI  - Some properties of the spectral radius of a set of matrices
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2006
SP  - 183
EP  - 188
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/
LA  - en
ID  - IJAMCS_2006_16_2_a2
ER  - 
%0 Journal Article
%A Czornik, A.
%A Jurgaś, P.
%T Some properties of the spectral radius of a set of matrices
%J International Journal of Applied Mathematics and Computer Science
%D 2006
%P 183-188
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/
%G en
%F IJAMCS_2006_16_2_a2
Czornik, A.; Jurgaś, P. Some properties of the spectral radius of a set of matrices. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 183-188. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a2/

[1] Berger M.A. and Yang Wang (1992): Bounded semigroups of matrices. -Lin. Alg. Appl., Vol. 166, No. 1, pp. 21-27.

[2] Czornik A. (2005): On the generalized spectral subradius. - Lin. Alg. Appl., Vol. 407, No. 1, pp. 242-248.

[3] Daubechies I. and Lagarias J.C. (1992a): Two-scale difference equation II. Infinite matrix products, local regularity bounds and fractals. - SIAM J. Math. Anal., Vol. 23, No. 4, pp. 1031-1079.

[4] Daubechies I. and Lagarias J.C (1992b): Sets of matrices all infinite products of which converge. - Linear Alg. Appl., No. 161, pp. 227-263.

[5] Elsner L. (1995): The generalized spectral radius theorem: An analytic-geometric proof. - Lin. Alg. Appl., Vol. 220, No. 1, pp. 151-159.

[6] Gol'dsheid I.Ya. and Margulis G.A. (1989): Lyapunov indices of a product of random matrices. - Russian Math. Surveys, Vol. 44, No. 1, pp. 11-71.

[7] Golub G.H. and Loan C.F.V. (1996): Matrix Computations. - 3rd Ed. Baltimore, Johns Hopkins University Pres.

[8] Gripenberg G. (1996): Computing the joint spectral radius. - Lin. Alg. Appl., Vol. 234, No. 1, pp. 43-60.

[9] Guglielmi N. and Zennaro M. (2001): On the asymptotic properties of a family of matrices.-Lin. Alg. Appl., Vol. 322, No. 1-3, pp. 169-192.

[10] Gurvits L. (1995): Stability of discrete linear inclusion. - Lin. Alg. Appl., Vol. 231, No. 1, pp. 47-85.

[11] Horn R.A. and Johnson C.R. (1985): Matrix Analysis. - Cambridge, MA: Cambridge Univ. Press.

[12] Jia R.Q. (1995): Subdivision schemes in Lp spaces. - Adv. Comput. Math., Vol. 3, No. 1, pp.309-341.

[13] Michelli C.A. and Prautzsch H. (1989): Uniform refinement of curves. - Lin. Alg. Appl., Vol. 114 and 115, No. 1, pp. 841-870.

[14] Rota G.C. and Strang G. (1960): A note on the joint spectral radius. -Inag. Math. Vol. 22, No. 1, pp. 379-381.

[15] Shih M.H. (1999): Simultaneous Schur stability. - Lin. Alg. Appl., Vol. 287, No. 1-3, pp. 323-336.