Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_2_a1, author = {Boudellioua, M. S.}, title = {An equivalent matrix pencil for bivariate polynomial matrices}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {175--181}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a1/} }
TY - JOUR AU - Boudellioua, M. S. TI - An equivalent matrix pencil for bivariate polynomial matrices JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 175 EP - 181 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a1/ LA - en ID - IJAMCS_2006_16_2_a1 ER -
%0 Journal Article %A Boudellioua, M. S. %T An equivalent matrix pencil for bivariate polynomial matrices %J International Journal of Applied Mathematics and Computer Science %D 2006 %P 175-181 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a1/ %G en %F IJAMCS_2006_16_2_a1
Boudellioua, M. S. An equivalent matrix pencil for bivariate polynomial matrices. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 2, pp. 175-181. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_2_a1/
[1] Blomberg H. and Ylinen R. (1983): Algebraic Theory for Multivariable Linear Systems. - London: Academic Press.
[2] Fuhrmann P.A. (1977): On strict system equivalence and similarity.- Int. J. Contr., Vol. 25, No. 1, pp. 5-10.
[3] Hayton G.E., Walker A.B. and Pugh A.C. (1990): Infinite frequency structure-preserving transformations for general polynomial system matrices. - Int. J. Contr., Vol. 33, No. 52, pp. 1-14.
[4] Johnson D.S. (1993): Coprimeness in multidimensional system theory and symbolic computation. - Ph.D. thesis, Loughborough University of Technology, UK.
[5] Kaczorek T. (1988): The singular general model of 2-D systems and its solution. - IEEE Trans. Automat. Contr., Vol. 33, No. 11, pp. 1060-1061.
[6] Karampetakis N.K., Vardulakis A.I. and Pugh A.C. (1995): A classification of generalized state-space reduction methods for linear multivariable systems. - Kybernetica, Vol. 31, No. 6, pp. 547-557.
[7] Levy B.C. (1981): 2-D polynomial and rational matrices and their applications for the modelling of 2-D dynamical systems.- Ph.D. thesis, Stanford University, USA.
[8] Oberst U. (1990): Multidimensional constant linear systems. - Acta Applicande Mathematicae, Vol. 20, pp. 1-175.
[9] Polderman J.W. and Willems J.C. (1998): Introduction to Mathematical System Theory: A Behavioral Approach. - New York: Springer.
[10] Pugh A.C., McInerney S.J., Hou M. and Hayton G.E. (1996): A transformation for 2-D systems and its invariants. - Proc. 35-th IEEE Conf. Decision and Control, Kobe, Japan, pp. 2157-2158.
[11] Pugh A.C., McInerney S.J., Boudellioua M.S. and Hayton G.E. (1998a): Matrix pencil equivalents of a general 2-D polynomial matrix. - Int. J. Contr., Vol. 71, No. 6, pp. 1027- 1050.
[12] Pugh A.C., McInerney S.J., Boudellioua M.S., Johnson D.S. and Hayton G.E. (1998): A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. - Int. J. Contr., Vol. 71, No. 3, pp. 491-503.
[13] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005a): Equivalence and reduction of 2-D systems.-IEEE Trans. Circ. Syst., Vol. 52, No. 5, pp. 371-375.
[14] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005b): Zero structures of n-D systems. - Int. J. Contr., Vol. 78, No. 4, pp. 277-285.
[15] Rosenbrock H.H. (1970): State Space and Multivariable Theory. - London: Nelson-Wiley.
[16] Sontag E.D. (1980): On generalized inverses of polynomial and other matrices. - IEEE Trans. Automat. Contr., Vol. AC- 25, No. 3, pp. 514-517.
[17] Verghese G.C. (1978): Infinite-frequency behaviour in generalized dynamical systems. - Ph.D. thesis, Stanford University, USA.
[18] Wolovich W.A. (1974): Linear Multivariable Systems. - New York: Springer.
[19] Youla D.C. and Gnavi G. (1979): Notes on n-dimensional system theory. - IEEE Trans. Circ. Syst., Vol. CAS-26, No. 2, pp. 105-111.
[20] Zerz E. (1996): Primeness of multivariate polynomial matrices. Syst. Contr. Lett., Vol. 29, pp. 139-145.