Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_1_a4, author = {Kowalczuk, Z. and Bia{\l}aszewski, T.}, title = {Niching mechanisms in evolutionary computations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {59--84}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a4/} }
TY - JOUR AU - Kowalczuk, Z. AU - Białaszewski, T. TI - Niching mechanisms in evolutionary computations JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 59 EP - 84 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a4/ LA - en ID - IJAMCS_2006_16_1_a4 ER -
Kowalczuk, Z.; Białaszewski, T. Niching mechanisms in evolutionary computations. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 59-84. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a4/
[1] Brogan W.L. (1991): Modern Control Theory. - Englewood Cliffs, NJ: Prentice Hall.
[2] Chen J., Patton R.J. and Liu G. (1996): Optimal residual design for fault diagnosis using multi-objective optimization and genetic algorithms. - Int. J. Syst. Sci., Vol. 27, No. 6, pp. 567-576.
[3] Chambers L. (Ed.) (1995): Practical Handbook of Genetic Algorithms. - Boca Raton, FL: CRC Press.
[4] Coello C.C.A. (2001): A short tutorial on evolutionary multiobjective optimization. - Proc. 1st Int. Conf. Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science, No. 1993, pp. 21-40, Berlin: Springer.
[5] Cotta C. and Schaefer R. (Eds.) (2004): Evolutionary Computation. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 3, pp. 279-440.
[6] Deb K., Pratap A., Argarwal S. and Meyarivan T. (2000): A fast and elitist multi-objective genetic algorithm: NSGA-II. - Techn. Rep., No. 200001 (PIN 208 016), Kanpur, India: Kanpur Genetic Algorithms Laboratory.
[7] De Jong K.A. (1975): An analysis of the behavior of a class of genetic adaptive systems.-Ph.D. thesis., Ann Arbor, MI: University of Michigan.
[8] Dridi M. and Kacem I. (2004): A hybrid approach for scheduling transportation networks. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 3, pp. 397-409.
[9] Fogarty T.C. and Bull L. (1995): Optimizing individual control rules and multiple communicating rule-based control systems with parallel distributed genetic algorithms. - IEE Proc. Contr. Theory Applic., Vol. 142, No. 3, pp. 211-215.
[10] Fonseca C.M. and Fleming P.J. (1993): Genetic algorithms for multi-objective optimization: Formulation, discussion and modification. -In: (Forrest, 1993), pp. 416-423.
[11] Forrest S. (Ed.) (1993): Genetic Algorithms. - Proc. 5th Int. Conf., San Mateo, CA: Morgan Kaufmann.
[12] Goldberg D.E. (1986): The genetic algorithm approach: Why, how, and what next. In: Adaptive and Learning Systems. Theory and Applications (K.S. Narendra, Ed.). - New York: Plenum Press, pp. 247-253.
[13] Goldberg D.E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning. - Reading, MA: Addison- Wesley.
[14] Goldberg D.E. (1990): Real-coded genetic algorithms, virtual alphabets, and blocking. - Techn. Rep., No. 90001, Champaing, IL: University of Illinois at Urbana.
[15] Grefenstette J.J. (Ed.) (1985): Genetic Algorithms and their Applications. - Proc. Int. Conf., Pittsburgh, PA: Lawrence Erlbaum Associates.
[16] Hajela P. and Lin C.-Y. (1992): Genetic search strategies in multicriterion optimal design. -Struct. Optim., Vol. 4, No. 2, pp. 99-107.
[17] Holland H. (1975): Adaptation in Natural and Artificial Systems. -Ann Arbor, MI: University of Michigan Press.
[18] Horn J. and Nafpliotis N. (1993): Multiobjective optimization using the niched Pareto genetic algorithm.-Techn. Rep., No. 93005, Genetic Algorithms Laboratory, University of Illinois at Urbana.
[19] Horn J., Nafpliotis N. and Goldberg D.E. (1994): A niched Pareto genetic algorithm for multiobjective optimization. - Proc. 1st IEEE Conf. Evolutionary Computation, IEEE World Congress Computational Computation, Piscataway, NJ, Vol. 1, pp. 82-87.
[20] Huang Y. and Wang S. (1997): The identification of fuzzy grey prediction systems by genetic algorithms. - Int. J. Syst. Sci., Vol. 28, No. 1, pp. 15-24.
[21] Izadi-Zamanabadi R. and Blanke M. (1998): A ship propulsion system model for fault-tolerant control. - Techn. Rep., No. 4262, Aalborg University, Denmark.
[22] Kirstinsson K. (1992): System identification and control using genetic algorithms. - IEEE Trans. Syst. Man Cybern., Vol. 22, No. 5, pp. 1033-1046.
[23] Korbicz J., Kościelny J.M., Kowalczuk Z. and Cholewa W., (Eds.) (2004): Fault Diagnosis. Models, Artificial Intelligence, Applications. -Berlin: Springer.
[24] Kowalczuk Z. and Białaszewski T. (2000a): Pareto-optimal observers for ship propulsion systems by evolutionary algorithms.- Proc. IFAC Symp. Safeprocess, Budapest, Hungary, Vol. 2, pp. 914-919.
[25] Kowalczuk Z. and Białaszewski T. (2000b): Fitness and ranking individuals warped by niching mechanism.-Proc. Polish- German Symp. Science, Research, Education, Zielona Góra, Poland, pp. 97-102.
[26] Kowalczuk Z. and Białaszewski T. (2001): Evolutionary multiobjective optimization with genetic sex recognition. - Proc. 7th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, Vol. 1, pp. 143-148.
[27] Kowalczuk Z. and Białaszewski T. (2002): Performance and robustness design of control systems via genetic gender multi-objective optimization. - Proc. 15th IFAC World Congress, Barcelona, Spain, (CD-ROM, 2a).
[28] Kowalczuk Z. and Białaszewski T. (2003): Multi-gender genetic optimization of diagnostic observers. - Proc. IFAC Workshop Control Applications of Optimization, Visegrad, Hungary, pp. 15-20.
[29] Kowalczuk Z. and Białaszewski T. (2004a): Genetic algorithms in multi-objective optimization of detection observers. - In: (Korbicz et al., 2004), pp. 511-556.
[30] Kowalczuk Z. and Białaszewski T. (2004b): Periodic and continuous niching in genetic optimization of detection observers.- Proc. 10-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, Vol. 1, pp. 781-786.
[31] Kowalczuk Z., Suchomski P. and Białaszewski T. (1999a): Evolutionary multi-objective Pareto optimization of diagnosticstate observers.-Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 3, pp. 689-709.
[32] Kowalczuk Z., Suchomski P. and Białaszewski T. (1999b): Genetic multi-objective Pareto optimization of state observers for FDI. - Proc. Europ. Contr. Conf., Karlsruhe, Germany, (CD-ROM, CP-15:10).
[33] Kowalczuk Z. and Suchomski P. (2004a): Control theory methods in diagnostic system design. In: (Korbicz et al., 2004), pp. 155-218.
[34] Kowalczuk Z. and Suchomski P. (2004b): Optimal detection observers based on eigenstructure assignment. In: (Korbicz et al., 2004), pp. 219-259.
[35] Li C.J., Tzeng T. and Jeon Y.C. (1997): A learning controller based on nonlinear ARX inverse model identified by genetic algorithm. - Int. J. Syst. Sci., Vol. 28, No. 8, pp. 847-855.
[36] Linkens D.A. and Nyongensa H.O. (1995): Genetic algorithmsfor fuzzy control, Part 1: Offline system development and application. -IEE Proc. Contr. Theory Applic., Vol. 142, No. 3, pp. 161-185.
[37] Man K.S., Tang K.S., Kwong S. and Lang W.A.H. (1997): Genetic Algorithms for Control and Signal Processing. -London: Springer.
[38] Martinez M., Senent J. and Blacso X. (1996): A comparative study of classical vs. genetic algorithm optimization applied in GPC controller. - Proc. IFAC 13th Triennial Word Congress, San Francisco, CA, pp. 327-332.
[39] Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs. - Berlin: Springer.
[40] Obuchowicz A. and Prętki P. (2004): Phenotypic evolution with mutation based on symmetric α-stable distributions. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 3, pp. 289-316.
[41] Park D. and Kandel A. (1994): Genetic-based new fuzzy reasoning models with application to fuzzy control. - IEEE Trans. Syst., Man Cybern., Vol. 24, No. 1, pp. 39-47.
[42] Patton R.J., Frank P.M. and Clark R.N., (Eds.) (1989): Fault Diagnosis in Dynamic Systems. Theory and Application. -New York: Prentice Hall.
[43] Ryan C. (1995): Niche and species formation in genetic algorithms, In: (Chambers, 1995). - Vol. 1, No. 2, pp. 55-74.
[44] Schaffer J.D. (1985): Multiple objective optimization with vector evaluated genetic algorithms. In: (Grefenstette, 1985). -pp. 93-100.
[45] Silverman B.W. (1986): Density Estimation for Statistics and Data Analysis. -London: Chapman and Hall.
[46] Srinivas N. and Deb K. (1994): Multiobjective optimization using nondominated sorting in genetic algorithms.-Evolut. Comput., Vol. 2, No. 3, pp. 221-248.
[47] Suchomski P. and Kowalczuk Z. (2004): Robust ∞-optimal synthesis of FDI systems, In: (Korbicz et al., 2004), pp. 261-298.
[48] Viennet R., Fontiex C. and Marc I. (1996): Multicriteria optimisation using a genetic algorithm for determining a Pareto set. -Int. J. Syst. Sci., Vol. 27, No. 2, pp. 255-260.
[49] Zakian V. and Al-Naib U. (1973): Design of dynamical and control systems by the method of inequalities. - IEE Proc. Contr. Theory Applic., Vol. 120, No. 11, pp. 1421-1427.
[50] Zitzler E. and Thiele L. (1998): An evolutionary algorithm for multiobjective optimization: The Strength Pareto Evolutionary Algorithm. - Techn. Rep., No. 43, Zurich, Switzerland: Computer Engineering and Networks Laboratory, ETH.
[51] Zitzler E., Laumanns M. and Thiele L. (2001): SPEA-2: Improving the strength Pareto evolutionary algorithm. - Techn. Rep., No. 103, Zurich, Switzerland: Computer Engineering and Networks Laboratory, Dept. of Electrical Engineering, ETH.