Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2006_16_1_a0, author = {Tatjewski, P. and {\L}awry\'nczuk, M.}, title = {Soft computing in model-based predictive control}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {7--26}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a0/} }
TY - JOUR AU - Tatjewski, P. AU - Ławryńczuk, M. TI - Soft computing in model-based predictive control JO - International Journal of Applied Mathematics and Computer Science PY - 2006 SP - 7 EP - 26 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a0/ LA - en ID - IJAMCS_2006_16_1_a0 ER -
Tatjewski, P.; Ławryńczuk, M. Soft computing in model-based predictive control. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) no. 1, pp. 7-26. http://geodesic.mathdoc.fr/item/IJAMCS_2006_16_1_a0/
[1] Allgöwer F., Badgwell T.A., Qin J.S., Rawlings J.B. and Wright S.J. (1999): Nonlinear predictive control and moving horizon estimation - An introductory overview, In: Advances in Control - Highlights of ECC'99 (P.M. Frank, ed.).- London: Springer, pp. 391-449.
[2] Babuška R., Sousa J.M. and Verbruggen H.B. (1999): Predictive control of nonlinear systems based on fuzzy and neural models. - Proc. European Control Conf., Karlsruhe, Germany, (on CD-ROM).
[3] Bazaraa M.S., Sherali J. and Shetty K. (1993): Nonlinear Programming: Theory and Algorithms. -New York: Wiley.
[4] Bemporad A., Morari M, Dua V. and Pistikopoulos E.N. (2002): The explicit linear quadratic regulator for constrained systems.-Automatica, Vol. 38, No. 1, pp. 3-20.
[5] Brdyś M.A. and Tatjewski P. (2005): Iterative Algorithms for Multilayer Optimizing Control. - London: Imperial College Press/World Scientific.
[6] Camacho E.F. and Bordons C. (1999): Model Predictive Control.- London: Springer.
[7] Clarke D.W., Mohtadi C. and Tuffs P.S. (1987): Generalized predictive control-I. The basic algorithm.-Automatica, Vol. 23, No. 2, pp. 137-148.
[8] Cutler R. and Ramaker B.L. (1979): Dynamic matrix control - A computer control algorithm. - Proc. AIChE National Meeting, Houston.
[9] Eder H.H. (1999): MBPC benefits and key success factors. - Proc. 5-th European Control Conf., ECC'99, Karlsruhe, Germany, (on CD-ROM).
[10] Findeisen W., Bailey F.N., Brdys M., Malinowski K., Tatjewski P. and Wozniak A. (1980): Control and Coordination in Hierarchical Systems. -Chichester: Wiley.
[11] FindeisenW. (1997): Control Structures for Complex Processes. - Warsaw: Warsaw University of Technology Press, (in Polish).
[12] Garcia C.E. (1984): Quadratic/dynamic matrix control of nonlinear processes: An application to a batch reaction process. - Proc. AIChE Annual Meeting, San Francisco.
[13] Haimovich H., Seron. M.M., Goodwin G.C. and Agüero J.C. (2003): A neural approximation to the explicit solution of constrained linear MPC.-Proc. European Control Conf., Cambridge, UK, (on CD-ROM).
[14] Haykin S. (1999): Neural Networks - A Comprehensive Foundation. - Englewood Cliffs, NY: Prentice Hall.
[15] Henson M.A. (1998): Nonlinear model predictive control: Current status and future directions. - Comput. Chem. Eng., Vol. 23, No. 2, pp. 187-202
[16] Hoekstra P., van den Boom T.J.J. and Botto M.A. (2001): Design of an analytic constrained predictive controller using neural networks. - Proc. European Control Conf., Porto, Portugal, (on CD-ROM).
[17] Johansen T.A. (2004): Approximate explicit receding horizon control of constrained nonlinear systems. - Automatica, Vol. 40, No. 2, pp. 293-300.
[18] Liu G.P. and Daley S. (1999): Output-model-based predictive control of unstable combustion systems using neural networks. -Contr. Eng. Pract., Vol. 7, No. 5, pp. 591-600.
[19] Liu G.P., Kadirkamanathan V. and Billings S.A. (1998): Predictive control for non-linear systems using neural networks.-Int. J. Contr., Vol. 71, No. 6, pp. 1119-1132.
[20] Ławryńczuk M. (2003): Nonlinear model predictive control algorithms with neural models.-Ph.D. thesis,Warsaw University of Technology, Warsaw, Poland.
[21] Ławryńczuk M. and Tatjewski P. (2001a): A multivariable neural predictive control algorithm. - Proc. IFAC Advanced Fuzzy-Neural Control Workshop, Valencia, Spain, pp. 191-196.
[22] Ławryńczuk M. and Tatjewski P. (2001b): A nonlinear predictive control algorithm for processes modelled by means of neural networks. - Proc. 7-th Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 489-494.
[23] Ławryńczuk M. and Tatjewski P. (2002): A computationally efficient nonlinear predictive control algorithm based on neural models. - Proc. 8-th Int. Conf. Methods and Models in Automation and Robotics, Szczecin, Poland, pp. 781-786.
[24] Ławryńczuk M. and Tatjewski P. (2004): A stable dual-mode type nonlinear predictive control algorithm based on online linearisation and quadratic programming. - Proc. 10-th Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 503-510.
[25] Maciejowski J.M. (2002): Predictive Control. - Harlow: Prentice Hall.
[26] Marusak P. and Tatjewski P. (2002): Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers. - Arch. Contr. Sci., Vol. 12, pp. 267-288.
[27] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: Stability and optimality. - Automatica, Vol. 36, No. 6, pp. 789-814.
[28] Michalska H. and Mayne D.Q. (1993) (2000): Robust receding horizon control of constrained nonlinear systems.-IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 1623-1633.
[29] Morari M. and Lee J.H. (1999): Model predictive control: Past, present and future. - Comput. Chem. Eng., Vol. 23, No. 4/5, pp. 667-682.
[30] Najim K., Rusnak A., Meszaros A. and Fikar M. (1997): Constrained long-range predictive control based on artificial neural networks. - Int. J. Syst. Sci., Vol. 28, No. 12, pp. 1211-1226.
[31] Nørgaard M., Ravn O., Poulsen N.K. and Hansen L.K. (2000): Neural Networks for Modelling and Control of Dynamic Systems. - London: Springer.
[32] Ortega J.G. and Camacho E.F. (1996): Mobile robot navigation in a partially structured static environment, using neural predictive control. - Contr. Eng. Pract., Vol. 4, No. 12, pp. 1669-1679.
[33] Parisini T. and Sacone S. (2001): Stable hybrid control based on discrete-event automata and receding-horizon neural regulators. -Automatica, Vol. 37, No. 8, pp. 1279-1292.
[34] Parisini T., Sanguineti M. and Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. - Int. J. Contr., Vol. 70, No. 3, pp. 341-362.
[35] Parisini T. and Zoppoli R. (1995): A receding-horizon regulator for nonlinear systems and a neural approximation. -Automatica, Vol. 31, No. 10, pp. 1443-1451.
[36] Piche S., Sayyar-Rodsari B., Johnson D. and Gerules M. (2000): Nonlinear model predictive control using neural networks. - IEEE Contr. Syst. Mag., Vol. 20, No. 3, pp. 56-62.
[37] Qin S.J. and Badgwell T.A. (2003): A survey of industrial model predictive control technology. -Contr. Eng. Pract., Vol. 11, No. 7, pp. 733-764.
[38] Rossiter J.A. (2003): Model-Based Predictive Control. - Boca Raton, FL: CRC Press.
[39] Tatjewski P. (2002): Advanced Control of Industrial Processes. Structures and Algorithms. - Warsaw: Akademicka Oficyna Wydawnicza EXIT, (in Polish, revised and extended English edition in preparation).
[40] Temeng K.O., Schnelle P.D. and McAvoy T.J. (1995): Model predictive control of an industrial packed bed reactor using neural networks.-J. Process Contr., Vol. 5, No. 1, pp. 19-27.
[41] Trajanoski Z. and Wach P. (1998): Neural predictive control for insulin delivery using the subcutaneous route. -IEEE Trans. Biomed. Eng., Vol. 45, No. 9, pp. 1122-1134.
[42] Vila J.P. and Wagner V. (2003): Predictive neuro-control of uncertain systems: Design and use of a neuro-optimizer. -Automatica, Vol. 39, No. 5, pp. 767-777.
[43] Wang L.X. and Wan F. (2001): Structured neural networks for constrained model predictive control. - Automatica, Vol. 37, No. 8, pp. 1235-1243.
[44] Yu D.L. and Gomm J.B. (2003): Implementation of neural network predictive control to a multivariable chemical reactor.-Contr. Eng. Pract., Vol. 11, No. 11, pp. 1315-1323. Received: 18 October 2005 Revised: 21 December 2005