Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 527-540.

Voir la notice de l'article provenant de la source Library of Science

In industrial control systems, practical interest is driven by the fact that today’s processes need to be operated under tighter performance specifications. Often these demands can only be met when process nonlinearities are explicitly considered in the controller. Nonlinear predictive control, the extension of well-established linear predictive control to nonlinear systems, appears to be a well-suited approach for this kind of problems. In this paper, an optimal nonlinear predictive control structure, which provides asymptotic tracking of smooth reference trajectories, is presented. The controller is based on a finite–horizon continuous time minimization of nonlinear predicted tracking errors. A key feature of the control law is that its implementation does not need to perform on-line optimization, and asymptotic tracking of smooth reference signal is guaranteed. An integral action is used to increase the robustness of the closed-loop system with respect to uncertainties and parameters variations. The proposed control scheme is first applied to planning motions problem of a mobile robot and, afterwards, to the trajectory tracking problem of a rigid link manipulator. Simulation results are performed to validate the tracking performance of the proposed controller.
Keywords: nonlinear continuous time predictive control, Taylor approximation, tracking trajectory and robot
Mots-clés : układ nieliniowy, układ ciągły, sterowanie predykcyjne, aproksymacja Taylora, śledzenie trajektorii
@article{IJAMCS_2005_15_4_a9,
     author = {Hedjar, R. and Toumi, R. and Boucher, P. and Dumur, D.},
     title = {Finite horizon nonlinear predictive control by the {Taylor} approximation: {Application} to robot tracking trajectory},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {527--540},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/}
}
TY  - JOUR
AU  - Hedjar, R.
AU  - Toumi, R.
AU  - Boucher, P.
AU  - Dumur, D.
TI  - Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 527
EP  - 540
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/
LA  - en
ID  - IJAMCS_2005_15_4_a9
ER  - 
%0 Journal Article
%A Hedjar, R.
%A Toumi, R.
%A Boucher, P.
%A Dumur, D.
%T Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 527-540
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/
%G en
%F IJAMCS_2005_15_4_a9
Hedjar, R.; Toumi, R.; Boucher, P.; Dumur, D. Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 527-540. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/

[1] Boucher P. and Dumur D. (1996): La commande prédictive. — Paris: Technip.

[2] Canudas De Wit C. and Fixot N. (1992): Adaptive control of robot manipulators via velocity estimated feedback. — IEEE Trans. Automat. Contr., Vol. 37, No. 8, pp. 1234–1237.

[3] Chen W.H., Balance D.J. and Gawthrop P.J. (2003): Optimal control of nonlinear systems: A predictive control approach. —Automatica, Vol. 39, No. 4, pp. 633–641.

[4] Chun Y.S. and Stepanenko Y. (1996): On the robust control of robot manipulators including actuator dynamics. — J. Robot. Sys., Vol. 13, No. 1, pp. 1–10.

[5] Clarke D.W, Mohtadi C. and Tuffs P.S. (1987a): Generalized predictive control, Part I: The basic algorithm. — Automatica, Vol. 23, No. 2, pp. 137–148.

[6] Clarke D.W, Mohtadi C. and Tuffs P.S. (1987b): Generalized predictive control, Part II. Extension and interpretations. —Automatica, Vol. 23, No. 2, pp. 149–160.

[7] Demircioglu H. and Gawthrop P.J. (1991): Continuous-time generalized predictive control (GPC).—Automatica, Vol. 27, No. 1, pp. 55–74.

[8] Gauthier J.P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems: Application to bioreactor. — IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875–880.

[9] Henson M.A. and Seborg D.E. (1997): Nonlinear Process Control.— Englewood Cliffs, NJ: Prentice Hall.

[10] Henson M.A. (1998): Nonlinear model predictive control: Current status and future directions. —Comput. Chemi. Eng., Vol. 23, No. 2, pp. 187–202.

[11] Khalil H.K. (1992): Nonlinear Systems. — New York: Macmillan.

[12] Kim M.S., Shin J.H., Hong S.G. and Lee J.J. (2003): Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modelling uncertainty and disturbances. —Mechatron. J., Vol. 13, No. 5, pp. 507–519.

[13] Lee K.W. and Khalil H.K. (1997): Adaptive output feedback control of robot manipulators using high gain observer. — Int. J. Contr., Vol. 67, No. 6, pp. 869–886.

[14] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: stability and optimality. — Automatica, Vol. 36, No. 6, pp. 789–814.

[15] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. — IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 1623–1633.

[16] Morari M., Lee J.H. (1999): Model predictive control: past, present and future. — Comput. Chem. Eng., Vol. 23, No. 4–5, pp. 667–682.

[17] Ping L. (1995): Optimal predictive control of continuous nonlinear systems.— Int. J. Contr., Vol. 62, No. 2, pp. 633–649.

[18] Singh S.N., Steinberg M. and Di Girolamo R.D. (1995): Nonlinear predictive control of feedback linearizable systems and flight control system design. — J. Guid. Contr. Dynam., Vol. 18, No. 5, pp. 1023–1028.

[19] Souroukh M. and Kravaris C. (1996): A continuous-time formulation of nonlinear model predictive control. — Int. J. Contr., Vol. 63, No. 1, pp. 121–146.

[20] Spong M.W. and Vidyasagar M. (1989): Robot Dynamics and Control. —New York: Wiley.

[21] Spong M.W. (1992): Robust control of robot manipulators. — IEEE Trans. Automat. Contr., Vol. 37, No. 11, pp. 1782–1786.