Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_4_a9, author = {Hedjar, R. and Toumi, R. and Boucher, P. and Dumur, D.}, title = {Finite horizon nonlinear predictive control by the {Taylor} approximation: {Application} to robot tracking trajectory}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {527--540}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/} }
TY - JOUR AU - Hedjar, R. AU - Toumi, R. AU - Boucher, P. AU - Dumur, D. TI - Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 527 EP - 540 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/ LA - en ID - IJAMCS_2005_15_4_a9 ER -
%0 Journal Article %A Hedjar, R. %A Toumi, R. %A Boucher, P. %A Dumur, D. %T Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 527-540 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/ %G en %F IJAMCS_2005_15_4_a9
Hedjar, R.; Toumi, R.; Boucher, P.; Dumur, D. Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 527-540. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a9/
[1] Boucher P. and Dumur D. (1996): La commande prédictive. — Paris: Technip.
[2] Canudas De Wit C. and Fixot N. (1992): Adaptive control of robot manipulators via velocity estimated feedback. — IEEE Trans. Automat. Contr., Vol. 37, No. 8, pp. 1234–1237.
[3] Chen W.H., Balance D.J. and Gawthrop P.J. (2003): Optimal control of nonlinear systems: A predictive control approach. —Automatica, Vol. 39, No. 4, pp. 633–641.
[4] Chun Y.S. and Stepanenko Y. (1996): On the robust control of robot manipulators including actuator dynamics. — J. Robot. Sys., Vol. 13, No. 1, pp. 1–10.
[5] Clarke D.W, Mohtadi C. and Tuffs P.S. (1987a): Generalized predictive control, Part I: The basic algorithm. — Automatica, Vol. 23, No. 2, pp. 137–148.
[6] Clarke D.W, Mohtadi C. and Tuffs P.S. (1987b): Generalized predictive control, Part II. Extension and interpretations. —Automatica, Vol. 23, No. 2, pp. 149–160.
[7] Demircioglu H. and Gawthrop P.J. (1991): Continuous-time generalized predictive control (GPC).—Automatica, Vol. 27, No. 1, pp. 55–74.
[8] Gauthier J.P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems: Application to bioreactor. — IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875–880.
[9] Henson M.A. and Seborg D.E. (1997): Nonlinear Process Control.— Englewood Cliffs, NJ: Prentice Hall.
[10] Henson M.A. (1998): Nonlinear model predictive control: Current status and future directions. —Comput. Chemi. Eng., Vol. 23, No. 2, pp. 187–202.
[11] Khalil H.K. (1992): Nonlinear Systems. — New York: Macmillan.
[12] Kim M.S., Shin J.H., Hong S.G. and Lee J.J. (2003): Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modelling uncertainty and disturbances. —Mechatron. J., Vol. 13, No. 5, pp. 507–519.
[13] Lee K.W. and Khalil H.K. (1997): Adaptive output feedback control of robot manipulators using high gain observer. — Int. J. Contr., Vol. 67, No. 6, pp. 869–886.
[14] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: stability and optimality. — Automatica, Vol. 36, No. 6, pp. 789–814.
[15] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. — IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 1623–1633.
[16] Morari M., Lee J.H. (1999): Model predictive control: past, present and future. — Comput. Chem. Eng., Vol. 23, No. 4–5, pp. 667–682.
[17] Ping L. (1995): Optimal predictive control of continuous nonlinear systems.— Int. J. Contr., Vol. 62, No. 2, pp. 633–649.
[18] Singh S.N., Steinberg M. and Di Girolamo R.D. (1995): Nonlinear predictive control of feedback linearizable systems and flight control system design. — J. Guid. Contr. Dynam., Vol. 18, No. 5, pp. 1023–1028.
[19] Souroukh M. and Kravaris C. (1996): A continuous-time formulation of nonlinear model predictive control. — Int. J. Contr., Vol. 63, No. 1, pp. 121–146.
[20] Spong M.W. and Vidyasagar M. (1989): Robot Dynamics and Control. —New York: Wiley.
[21] Spong M.W. (1992): Robust control of robot manipulators. — IEEE Trans. Automat. Contr., Vol. 37, No. 11, pp. 1782–1786.