Hybrid stabilization of discrete-time LTI systems with two quantized signals
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 509-516.

Voir la notice de l'article provenant de la source Library of Science

We consider stabilizing a discrete-time LTI (linear time-invariant) system via state feedback where both the quantized state and control input signals are involved. The system under consideration is stabilizable and stabilizing state feedback has been designed without considering quantization, but the system’s stability is not guaranteed due to the quantization effect. For this reason, we propose a hybrid quantized state feedback strategy asymptotically stabilizing the system, where the values of the quantizer parameters are updated at discrete time instants. We also extend the result to the case of static output feedback.
Keywords: discrete-time LTI system, hybrid stabilization strategy, quantizer, state feedback, output feedback
Mots-clés : system czasu dyskretnego, strategia stabilizacji, kwantyzator, sprzężenie zwrotne
@article{IJAMCS_2005_15_4_a7,
     author = {Zhai, G. and Matsumoto, Y. and Chen, X. and Imae, J. and Kobayashi, T.},
     title = {Hybrid stabilization of discrete-time {LTI} systems with two quantized signals},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {509--516},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a7/}
}
TY  - JOUR
AU  - Zhai, G.
AU  - Matsumoto, Y.
AU  - Chen, X.
AU  - Imae, J.
AU  - Kobayashi, T.
TI  - Hybrid stabilization of discrete-time LTI systems with two quantized signals
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 509
EP  - 516
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a7/
LA  - en
ID  - IJAMCS_2005_15_4_a7
ER  - 
%0 Journal Article
%A Zhai, G.
%A Matsumoto, Y.
%A Chen, X.
%A Imae, J.
%A Kobayashi, T.
%T Hybrid stabilization of discrete-time LTI systems with two quantized signals
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 509-516
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a7/
%G en
%F IJAMCS_2005_15_4_a7
Zhai, G.; Matsumoto, Y.; Chen, X.; Imae, J.; Kobayashi, T. Hybrid stabilization of discrete-time LTI systems with two quantized signals. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 509-516. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a7/

[1] Brockett R.W. and Liberzon D.(2000): Quantized feedback stabilization of linear systems. — IEEE Trans. Automat. Contr., Vol. 45, No. 7, pp. 1279–1289.

[2] Bushnell L.G., Ed. (2001): Special section on networks control.— IEEE Contr. Sys. Mag., Vol. 21, No. 1, pp. 22–99.

[3] Delchamps D.F. (1990): Stabilizing a linear system with quantized state feedback. — IEEE Trans. Automat. Contr., Vol. 35, No. 8, pp. 916–924.

[4] Hespanha J.P. and Morse A.S. (1999): Stability of switched systems with average dwell-time. — Proc. 38th IEEE Conf. Decision and Control, Phoenix, USA, pp. 2655–2660.

[5] Liberzon D. (2000): Nonlinear stabilization by hybrid quantized feedback. — Proc. 3rd Int. Workshop Hybrid Systems: Computation and Control, Pittsburgh, USA, pp. 243–257.

[6] Liberzon D. (2003): Hybrid feedback stabilization of systems with quantized signals. — Automatica, Vol. 39, No. 9, pp. 1543–1554.

[7] Zhai G., Hu B., Yasuda K., and Michel A.N. (2001): Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach. — Int. J. Syst. Sci., Vol. 32, No. 8, pp. 1055–1061.

[8] Zhai G., Mi Y., Imae J. and Kobayashi T. (2005): Design of H∞ feedback control systems with quantized signals. — Prepr. 16th IFAC World Congress, Prague, Czech Republic, (on CD-ROM).