Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_4_a2, author = {Dzieli\'nski, A.}, title = {Stability of a class of adaptive nonlinear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {455--462}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a2/} }
TY - JOUR AU - Dzieliński, A. TI - Stability of a class of adaptive nonlinear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 455 EP - 462 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a2/ LA - en ID - IJAMCS_2005_15_4_a2 ER -
Dzieliński, A. Stability of a class of adaptive nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 455-462. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a2/
[1] Corduneanu C. (1960): Application of differential inequalities to stability theory.—Analele Ştiinţifice ale Universităţii “Al.I. Cuza“ din Iaşi (Serie Nouă). Secţiunea I (Matematică, Fizică, Chimie), Vol. VI, No. 1, pp. 47–58, (in Russian).
[2] Corduneanu C. (1961): Addendum to the paper Application of differential inequalities to stability theory. — Analele Ştiinţifice ale Universităţii “Al. I. Cuza” din Iaşi (Serie Nouă). Secţiunea I (Matematică, Fizică, Chimie), Vol. VII(2), pp. 247–252, (in Russian).
[3] Corduneanu C. (1964): On partial stability.—Revue Roumaine de Mathématiques Pures et Appliquées, Vol. IX(3), pp. 229–236, (in French).
[4] Dzieliński A. (2002a): Neural networks based NARX models in nonlinear adaptive control. — App. Math. Comput. Sci., Vol. 12, No. 2, pp. 101–106.
[5] Dzieliński A. (2002b): Difference inequalities and BIBO stability of approximate NARX models. — Bull. Polish Acad. Sci., Techn. Sci., Vol. 50, No. 4, pp. 295–311.
[6] Hahn W.(1963): Theory and Application of Liapunov’s Direct Method. —Englewood Cliffs, NJ: Prentice-Hall.
[7] Hahn W. (1967): Stability of Motion. —New York: Springer.
[8] Hatvany L.(1975): On the application of differential inequalities to stability theory. — Vestnik Moskovskogo Universiteta, Vol. I30, No. 3, pp. 83–89, (in Russian).
[9] Lakshmikantham V.(1962a): Differential systems and extension of Lyapunov’s method.—MichiganMath. J., Vol. 9, No. 4, pp. 311–320.
[10] Lakshmikantham V. (1962b): Notes on variety of problems of differential systems. — Arch. Rat. Mech. Anal., Vol. 10, No. 2, pp. 119–126.
[11] Lakshmikantham V. and Leela S. (1969a): Differential and Integral Inequalities. Theory and Applications, Vol. I: Ordinary Differential Equations. — New York: Academic Press.
[12] Lakshmikantham V. and Leela S. (1969b): Differential and Integral Inequalities. Theory and Applications, Vol. II: Functional, Partial, Abstract, and Complex Differential Equations. —New York: Academic Press.
[13] Liu X. and Siegel D., editors. (1994): Comparison Method in Stability Theory. — Amsterdam: Marcel Dekker.
[14] Luzin N. N. (1951): On the method of approximate integration due to academician S. A. Chaplygin. — Uspekhi matematicheskikh nauk, Vol. 6, No. 6, pp. 3–27, (in Russian).
[15] Makarov S. M. (1938): A generalisation of fundamental Lyapunov’s theorems on stability of motion. — Izvestiya fiziko-matematicheskogo obshchestva pri Kazanskom gosudarstvennom universitete (Seriya 3), Vol. 10, No. 3, pp. 139–159, (in Russian).
[16] Narendra K. S. and Annaswamy A. M. (1989): Stable Adaptive Systems. — Eglewood Cliffs, NJ: Prentice-Hall.
[17] Pachpatte B. G. (1971): Finite-difference inequalities and an extension of Lyapunov’s method. — Michigan Math. J., Vol. 18, No. 4, pp. 385–391.
[18] Rabczuk R. (1976): Elements of Differential Inequalities. — Warsaw: Polish Scientific Publishers, (in Polish).
[19] Szarski J. (1967): Differential Inequalities, 2nd Ed.. —Warsaw: Polish Scientific Publishers, (in Polish).
[20] Walter W. (1970): Differential and Integral Inequalities. — Berlin: Springer.