Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_4_a1, author = {Kaczorek, T.}, title = {Realization problem for a class of positive continuous-time systems with delays}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {447--453}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/} }
TY - JOUR AU - Kaczorek, T. TI - Realization problem for a class of positive continuous-time systems with delays JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 447 EP - 453 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/ LA - en ID - IJAMCS_2005_15_4_a1 ER -
%0 Journal Article %A Kaczorek, T. %T Realization problem for a class of positive continuous-time systems with delays %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 447-453 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/ %G en %F IJAMCS_2005_15_4_a1
Kaczorek, T. Realization problem for a class of positive continuous-time systems with delays. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 447-453. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/
[1] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. — IEEE Trans. Automat. Contr., Vol. 49, No. 5, pp. 651–664.
[2] Busłowicz M. (1982): Explicit solution of discrete-delay equations. —Found. Contr. Eng., Vol. 7, No. 2, pp. 67–71.
[3] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. — Proc. 12-th Mediterranean Conf. Control and Automation, Kasadasi, Izmir, Turkey, (on CD–ROM).
[4] Farina L. and Rinaldi S.(2000): Positive Linear Systems, Theory and Applications. — New York: Wiley.
[5] Kaczorek T. (2002): Positive 1D and 2D Systems. — London: Springer.
[6] Kaczorek T. (2003): Some recent developments in positive systems. — Proc. 7-th Conf. Dynamical Systems Theory and Applications, Łód´z, Poland, pp. 25–35.
[7] Kaczorek T. and Busłowicz M. (2004): Minimal realization for positive multivariable linear systems with delay. — Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, pp. 181–187.
[8] Xie G. and Wang L. (2003): Reachability and controllability of positive linear discrete-time systems with time-delays, In: Positive Systems (L. Benvenuti, A. De Santis and L. Farina, Eds.).—Berlin: Springer, pp. 377–384.