Realization problem for a class of positive continuous-time systems with delays
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 447-453.

Voir la notice de l'article provenant de la source Library of Science

The realization problem for a class of positive, continuous-time linear SISO systems with one delay is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for the computation of positive minimal realizations is presented and illustrated by an example.
Keywords: positive realization, continuous-time system, delay, existence, computation
Mots-clés : realizacja dodatnia, układ ciągły, opóźnienie, obliczanie
@article{IJAMCS_2005_15_4_a1,
     author = {Kaczorek, T.},
     title = {Realization problem for a class of positive continuous-time systems with delays},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {447--453},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Realization problem for a class of positive continuous-time systems with delays
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 447
EP  - 453
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/
LA  - en
ID  - IJAMCS_2005_15_4_a1
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Realization problem for a class of positive continuous-time systems with delays
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 447-453
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/
%G en
%F IJAMCS_2005_15_4_a1
Kaczorek, T. Realization problem for a class of positive continuous-time systems with delays. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 4, pp. 447-453. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_4_a1/

[1] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. — IEEE Trans. Automat. Contr., Vol. 49, No. 5, pp. 651–664.

[2] Busłowicz M. (1982): Explicit solution of discrete-delay equations. —Found. Contr. Eng., Vol. 7, No. 2, pp. 67–71.

[3] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. — Proc. 12-th Mediterranean Conf. Control and Automation, Kasadasi, Izmir, Turkey, (on CD–ROM).

[4] Farina L. and Rinaldi S.(2000): Positive Linear Systems, Theory and Applications. — New York: Wiley.

[5] Kaczorek T. (2002): Positive 1D and 2D Systems. — London: Springer.

[6] Kaczorek T. (2003): Some recent developments in positive systems. — Proc. 7-th Conf. Dynamical Systems Theory and Applications, Łód´z, Poland, pp. 25–35.

[7] Kaczorek T. and Busłowicz M. (2004): Minimal realization for positive multivariable linear systems with delay. — Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, pp. 181–187.

[8] Xie G. and Wang L. (2003): Reachability and controllability of positive linear discrete-time systems with time-delays, In: Positive Systems (L. Benvenuti, A. De Santis and L. Farina, Eds.).—Berlin: Springer, pp. 377–384.