Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_3_a8, author = {Clempner, J.}, title = {Colored decision process {Petri} nets: {Modeling,} analysis and stability}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {405--420}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a8/} }
TY - JOUR AU - Clempner, J. TI - Colored decision process Petri nets: Modeling, analysis and stability JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 405 EP - 420 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a8/ LA - en ID - IJAMCS_2005_15_3_a8 ER -
%0 Journal Article %A Clempner, J. %T Colored decision process Petri nets: Modeling, analysis and stability %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 405-420 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a8/ %G en %F IJAMCS_2005_15_3_a8
Clempner, J. Colored decision process Petri nets: Modeling, analysis and stability. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 405-420. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a8/
[1] Bellman R.E. (1957): Dynamic Programming. — Princeton, N.J.: Princeton Univ. Press.
[2] Clempner J. (2005): Optimizing the decision process on Petri nets via a Lyapunov-like function. — Int. J. Pure Appl. Math., Vol. 19, No. 4, pp. 477–494.
[3] Clempner J., Medel J. and Cârsteanu A. (2005): Extending games with local and robust Lyapunov equilibrium and stability condition.—Int. J. Pure Appl. Math., Vol. 19, No. 4, pp. 441–454.
[4] Howard R.A. (1960): Dynamic Programming and Markov Processes. —Cambridge: MIT Press.
[5] Jensen K. (1981): Coloured Petri Nets and the Invariant Method. —North-Holland Publishing Company.
[6] Jensen K. (1986): Coloured Petri Nets.—Tech. Rep., Computer Science Department, Aarhus University, Denmark.
[7] Jensen K. (1994): An Introduction to the Theoretical Aspects of Coloured Petri Nets. — Lecture Notes in Computer Science, Vol. 803, Berlin: Springer.
[8] Jensen K. (1997a): Coloured Petri Nets, Vol. 1. — Berlin: Springer.
[9] Jensen K. (1997b): Coloured Petri Nets, Vol. 2. — Berlin: Springer.
[10] Kalman R.E. and Bertram J.E. (1960): Control system analysis and design via the “Second Method” of Lyapunov. — J. Basic Eng., Vol. 82, pp. 371–393.
[11] Lakshmikantham V., Leela S. and Martynyuk A.A. (1990): Practical Stability of Nonlinear Systems. — Singapore: World Scientific.
[12] Lakshmikantham V., Matrosov V.M. and Sivasundaram S. (1991): Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems. —Dordrecht: Kluwer.
[13] Massera J.L. (1949): On Lyapunoff ’s coonditions of stability — Ann. Math., Vol. 50, No. 3, pp. 705–721.
[14] Murata T., (1989): Petri Nets Properties, analysis and applications. —Proc. IEEE, Vol. 77, No. 4, pp. 541–580.
[15] Passino K.M., Burguess K.L. and Michel A.N. (1995): Lagrange stability and boundedness of discrete event systems. — J. Discr. Event Syst. Theory Appl., Vol. 5, pp. 383–403.
[16] Puterman M.L. (1994): Markov Decision Processes: Discrete Stochastic Dynamic Programming. —New York: Wiley.