An observability problem for a class of uncertain-parameter linear dynamic systems
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 331-338.

Voir la notice de l'article provenant de la source Library of Science

An observability problem for a class of linear, uncertain-parameter, time-invariant dynamic SISO systems is discussed. The class of systems under consideration is described by a finite dimensional state-space equation with an interval diagonal state matrix, known control and output matrices and a two-dimensional uncertain parameter space. For the system considered a simple geometric interpretation of the system spectrum can be given. The geometric interpretation of the system spectrum is the base for defining observability and non-observability areas for the discussed system. The duality principle allows us to test observablity using controllability criteria. For the uncertain-parameter system considered, some controllability criteria presented in the author’s previous papers are used. The results are illustrated with numerical examples.
Keywords: linear uncertain-parameter dynamic systems, observability
Mots-clés : układ dynamiczny liniowy, układ o niepewnych parametrach, obserwowalność
@article{IJAMCS_2005_15_3_a1,
     author = {Oprz\k{e}dkiewicz, K.},
     title = {An observability problem for a class of uncertain-parameter linear dynamic systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {331--338},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/}
}
TY  - JOUR
AU  - Oprzędkiewicz, K.
TI  - An observability problem for a class of uncertain-parameter linear dynamic systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 331
EP  - 338
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/
LA  - en
ID  - IJAMCS_2005_15_3_a1
ER  - 
%0 Journal Article
%A Oprzędkiewicz, K.
%T An observability problem for a class of uncertain-parameter linear dynamic systems
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 331-338
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/
%G en
%F IJAMCS_2005_15_3_a1
Oprzędkiewicz, K. An observability problem for a class of uncertain-parameter linear dynamic systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 331-338. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/

[1] Barnett S. (1992): Matrices. Methods and Applications. — Oxford: Clarendon Press.

[2] Białas S. (2002): Robust Stability of Polynomials and Matrices. — Cracow: AGH University of Science and Technology Press, (in Polish).

[3] Busłowicz M. (1997): Stability of Linear Time Invariant Systems with Uncertain Parameters. — Białystok: Technical University Press, (in Polish).

[4] Busłowicz M. (2000): Robust Stability of Dynamic Linear Time Invariant Systems with Delays.—Warsaw-Białystok: Polish Academy of Sciences, The Committee of Automatics and Robotics, (in Polish).

[5] Feintuch A. (1998): Robust Control Theory in Hilbert Space. — New York: Springer.

[6] Jakubowska M. (1999): Algorithms for checking stability of the interval matrix and their numerical realization. — Automatyka, Vol. 3, No. 2, pp. 413–430, (in Polish).

[7] Kalmikov S.A. , Sokin J.I. Juldasev Z. H. (1986): Interval Analysis Methods. —Moscow: Nauka, (in Russian).

[8] Kharitonov W. L. (1978): On the asymptotical stability of the equilibrium location for a system of linear differential equations. — Diff. Uravnenya, Vol. 14, No. 11, pp. 2086–2088, (in Russian).

[9] Klamka J. (1990): Contollability of Dynamic Systems. — Warsaw: Polish Scientific Publishers, (in Polish).

[10] Mao X. (2002): Exponential stability of stochastic delay interval systems with Markovian switching.—IEEE Trans. Automat. Contr., Vol. 47, No. 10, pp. 1064–1612.

[11] Mitkowski W. (1991): Stabilisation of Dynamic Systems. — Warsaw: Polish Scientific Publishers (in Polish).

[12] Moore R. (1966): Interval Analysis.—Upper Saddle River, Englewood Cliffs: Prentice Hall.

[13] Moore R. (1997): Methods and Applications of Interval Analysis. —Philadelphia: SIAM.

[14] Oprzędkiewicz K. (2003): The interval parabolic system. — Arch. Contr. Sci., Vol. 13, No. 4, pp. 391–405.

[15] Oprzędkiewicz K. (2004): A controllability problem for a class of uncertain-parameters linear dynamic systems. — Arch. Contr. Sci., Vol. 14 (L), No. 1, pp. 85–100.