Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_3_a1, author = {Oprz\k{e}dkiewicz, K.}, title = {An observability problem for a class of uncertain-parameter linear dynamic systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {331--338}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/} }
TY - JOUR AU - Oprzędkiewicz, K. TI - An observability problem for a class of uncertain-parameter linear dynamic systems JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 331 EP - 338 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/ LA - en ID - IJAMCS_2005_15_3_a1 ER -
%0 Journal Article %A Oprzędkiewicz, K. %T An observability problem for a class of uncertain-parameter linear dynamic systems %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 331-338 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/ %G en %F IJAMCS_2005_15_3_a1
Oprzędkiewicz, K. An observability problem for a class of uncertain-parameter linear dynamic systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 331-338. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a1/
[1] Barnett S. (1992): Matrices. Methods and Applications. — Oxford: Clarendon Press.
[2] Białas S. (2002): Robust Stability of Polynomials and Matrices. — Cracow: AGH University of Science and Technology Press, (in Polish).
[3] Busłowicz M. (1997): Stability of Linear Time Invariant Systems with Uncertain Parameters. — Białystok: Technical University Press, (in Polish).
[4] Busłowicz M. (2000): Robust Stability of Dynamic Linear Time Invariant Systems with Delays.—Warsaw-Białystok: Polish Academy of Sciences, The Committee of Automatics and Robotics, (in Polish).
[5] Feintuch A. (1998): Robust Control Theory in Hilbert Space. — New York: Springer.
[6] Jakubowska M. (1999): Algorithms for checking stability of the interval matrix and their numerical realization. — Automatyka, Vol. 3, No. 2, pp. 413–430, (in Polish).
[7] Kalmikov S.A. , Sokin J.I. Juldasev Z. H. (1986): Interval Analysis Methods. —Moscow: Nauka, (in Russian).
[8] Kharitonov W. L. (1978): On the asymptotical stability of the equilibrium location for a system of linear differential equations. — Diff. Uravnenya, Vol. 14, No. 11, pp. 2086–2088, (in Russian).
[9] Klamka J. (1990): Contollability of Dynamic Systems. — Warsaw: Polish Scientific Publishers, (in Polish).
[10] Mao X. (2002): Exponential stability of stochastic delay interval systems with Markovian switching.—IEEE Trans. Automat. Contr., Vol. 47, No. 10, pp. 1064–1612.
[11] Mitkowski W. (1991): Stabilisation of Dynamic Systems. — Warsaw: Polish Scientific Publishers (in Polish).
[12] Moore R. (1966): Interval Analysis.—Upper Saddle River, Englewood Cliffs: Prentice Hall.
[13] Moore R. (1997): Methods and Applications of Interval Analysis. —Philadelphia: SIAM.
[14] Oprzędkiewicz K. (2003): The interval parabolic system. — Arch. Contr. Sci., Vol. 13, No. 4, pp. 391–405.
[15] Oprzędkiewicz K. (2004): A controllability problem for a class of uncertain-parameters linear dynamic systems. — Arch. Contr. Sci., Vol. 14 (L), No. 1, pp. 85–100.