Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_3_a0, author = {Saadni, M. S. and Chaabane, M. and Mehdi, D.}, title = {Stability and stabilizability of a class of uncertain dynamical systems with delays}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {321--329}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a0/} }
TY - JOUR AU - Saadni, M. S. AU - Chaabane, M. AU - Mehdi, D. TI - Stability and stabilizability of a class of uncertain dynamical systems with delays JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 321 EP - 329 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a0/ LA - en ID - IJAMCS_2005_15_3_a0 ER -
%0 Journal Article %A Saadni, M. S. %A Chaabane, M. %A Mehdi, D. %T Stability and stabilizability of a class of uncertain dynamical systems with delays %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 321-329 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a0/ %G en %F IJAMCS_2005_15_3_a0
Saadni, M. S.; Chaabane, M.; Mehdi, D. Stability and stabilizability of a class of uncertain dynamical systems with delays. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 3, pp. 321-329. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_3_a0/
[1] Boukas E.-K. and Liu Z.-K. (2002): Deterministic and Stochastic Time-Delay Systems. — Boston: Birkhäuser, Marcel Dekker.
[2] de la Sen M. (2002): Stability test for two common classes of linear time-delay systems and hybrid systems.—Lutianian Math. J., Vol. 42, No. 2, pp. 153–168.
[3] Hale J.-K. (1977): Theory of Functional Differential Equations. —New York: Springer.
[4] Hmamed A. (1997): Further results on the robust stability of uncertain linear systems including delayed perturbations. —Automatica, Vol. 33, No. 9, pp. 1763–1765.
[5] Kim J.-H. (2001): Delay and its time derivative dependent robust stability of time-delayed linear systems with uncertainty. — IEEE Trans. Automat. Contr., Vol. 46, No. 5, pp. 789–792.
[6] Lee B. and Lee J.-G. (1999): Robust stability and stabilization of linear delayed systems with structured uncertainty. — Automatica, Vol. 35, No. 6, pp. 1149–1154.
[7] Lee B. and Lee J.-G. (2000): Robust control of uncertain systems with input delay and input sector nonlinearity. — Proc. 39th IEEE Conf. Decision and Control, North Sydney, Australia, Vol. 5, pp. 4430–4435.
[8] Li X. and de Souza C.-E. (1996): Criteria for robust stability of uncertain linear systems with time-varying state delays. — Proc. 13th IFAC World Congress, San Francisco, CA, pp. 137–142.
[9] Li X. and de Souza C.-E. (1997a): Criteria for robust stability of uncertain linear systems with state delays. —Automatica, Vol. 33, No. 9, pp. 1657–1662.
[10] Li X. and de Souza C.-E. (1997b): Delay dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach. — IEEE Trans. Automat. Contr., Vol. 42, No. 8, pp. 1144–1148.
[11] Li X., Fu M., and de Souza C.-E. (1992): H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback. — IEEE Trans. Automat. Contr., Vol. 37, No. 8, pp. 1253–1256.
[12] Mahmoud M.-S. (2000): Robust Control and Filtering for Time-Delay Systems. — New York: Marcel-Dekker.
[13] Marchenko V.-M., Borkovskaja I.-M. and Jakimenko A.-A. (1996): Linear state-feedback for after-effect systems: stabilization and modal control. — Proc. 13th IFAC World Congress, San-Francisco, USA, pp. 441–446.
[14] Niculescu S.-I., de Souza C.-E., Dion J.-M. and Dugard L. (1994): Robust stability and stabilization of uncertain linear systems with state delay: Single dealy case. — Proc. IFAC Symp. Robust Control Design, Rio de Janero, Brazil, pp. 469–474.
[15] Su J.-H. (1994): Further results on the robust stability of linear systems with a single time-delay. — Syst. Contr. Lett., Vol. 23, pp. 375–379.
[16] Su T.J. and Huang C.-G. (1992): Robust stability of delay dependence for linear systems. — IEEE Trans. Automat. Contr., Vol. 37, No. 10, pp. 1656–1659.
[17] Sun Y.J., Hsieh J.-G. and Yang H.-C. (1997): On the stability of uncertain systems with multiple time-varying delays. — IEEE Trans. Automat. Contr., Vol. 42, No. 1, pp. 101–105.
[18] Wang S.-S., Chen B.-S. and Lin T.-P. (1987): Robust stability of uncertain time-delay systems. — Int. J. Contr., Vol. 46, No. 4, pp. 963–976.
[19] Xu B. (1995): On delay-independent stability of large scale systems with time-delays. — IEEE Trans. Automat. Contr., Vol. 40, No. 5, pp. 930–933.
[20] Xu B. and Liu Y. (1994): An improved Razimukhin-type theorem and its applications. — IEEE Trans. Automat. Contr., Vol. 39, No. 4, pp. 839–841.