Comparison of Linear Control Methods for an AMB System
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 245-255.

Voir la notice de l'article provenant de la source Library of Science

The contactless nature of active magnetic bearings brings about many advantages over the conventional bearing while industrial real-time applications are often limited by the significant complexity of control algorithms. This paper presents the application of an LQ controller to an active magnetic bearing system (AMB). Two control strategies are presented and compared: local and global. In the first case the rotor is modelled as two separated masses located at the bearing. In the second case rotor stabilization is considered globally as a problem of the rotating rigid body suspended in a magnetic field. The second approach is especially important for high-speed rotating machines. The control performance of both algorithms was analysed using an experimental AMB laboratory system.
Keywords: active magnetic bearing, real-time control, modelling, LQ control, control performance
Mots-clés : aktywne łożysko magnetyczne, sterowanie w czasie rzeczywistym, sterowanie liniowe, jakość regulacji
@article{IJAMCS_2005_15_2_a7,
     author = {Grega, W. and Pi{\l}at, A.},
     title = {Comparison of {Linear} {Control} {Methods} for an {AMB} {System}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {245--255},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a7/}
}
TY  - JOUR
AU  - Grega, W.
AU  - Piłat, A.
TI  - Comparison of Linear Control Methods for an AMB System
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 245
EP  - 255
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a7/
LA  - en
ID  - IJAMCS_2005_15_2_a7
ER  - 
%0 Journal Article
%A Grega, W.
%A Piłat, A.
%T Comparison of Linear Control Methods for an AMB System
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 245-255
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a7/
%G en
%F IJAMCS_2005_15_2_a7
Grega, W.; Piłat, A. Comparison of Linear Control Methods for an AMB System. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a7/

[1] Gosiewski Z. (1999): Magnetic Bearings for Rotated Machines. Control and Experimants. — Warsaw: Sci. Library of the Aviation Institute (in Polish).

[2] Grega W. (1997): Time-critical integrated control and design systems. — Proc. Int. Conf. Methods and Models in Automatics and Robotics, Międzyzdroje, Poland, pp. 665–670.

[3] Joo S. and Seo J.H. (1997): Design and analysis of the nonlinear fedback linearizing control for a electromagnetic suspension system. — IEEE Trans. Contr. Syst. Technol., Vol. 5, No. 1, pp. 135–144.

[4] Kim M., Higuchi T., Mizuno T. and Hara H. (1998): Application of a magnetic bearing spindle to non-circular fine boring. — Proc. 6-th Int. Symp. Magnetic Bearings, Cambridge MA, pp. 22–31.

[5] Lee A. and Fan Y. (1996): Decentralized PID control of magnetic bearings in rotor system. — Proc. 5-th Int. Symp. Magnetic Bearings, Kanazawa, Japan, pp. 13–18.

[6] Levine J., Lottin J., and Ponsart J.C. (1996): A nonlinear approach to the control of magnetic bearings.—IEEE Trans. Contr. Syst. Technol., Vol. 4, No. 5, pp. 524–544.

[7] Lin L.C. and Gau Y.-B. (1997): Feedback linearization and fuzzy control for conical magnetic bearing.—IEEE Trans. Contr. Syst. Technol., Vol. 5, No. 4, pp. 417–426.

[8] Lottin J., Ponsart J.C. and Mouille P. (1996): Non-linear control of active magnetic bearings. Digital implementation. — Proc. 5-th Int. Symp. Magnetic Bearings, Kanazawa, Japan, pp. 77–82.

[9] Math Works Inc. (1999): Real–Time Windows Target User‘s Guide. —Natick, MA: Math. Works Inc.

[10] Mitkowski W. (1991): Stabilization of Dynamical Control System.— Warsaw: WNT, (in Polish).

[11] Piłat A. (2002): Feedback linearization control of AMB system. — Proc. 8-th Int. Symp. Magnetic Bearings (ISMB-8), Mito, Japan, pp. 465–470.

[12] Piłat A. (2002): Control of magnetic levitation systems.—Ph.D. Thesis, AGH-University of Science and Technology, Cracow, Poland.

[13] Schweitzer G., Traxler A. and Bleuler H. (1993): Magnetlager. — Heidelberg: Springer.