Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2005_15_2_a4, author = {Liu, P. L.}, title = {On {The} {Stability} of {Neutral-type} {Uncertain} {Systems} {With} {Multiple} {Time} {Delays}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {221--229}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a4/} }
TY - JOUR AU - Liu, P. L. TI - On The Stability of Neutral-type Uncertain Systems With Multiple Time Delays JO - International Journal of Applied Mathematics and Computer Science PY - 2005 SP - 221 EP - 229 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a4/ LA - en ID - IJAMCS_2005_15_2_a4 ER -
%0 Journal Article %A Liu, P. L. %T On The Stability of Neutral-type Uncertain Systems With Multiple Time Delays %J International Journal of Applied Mathematics and Computer Science %D 2005 %P 221-229 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a4/ %G en %F IJAMCS_2005_15_2_a4
Liu, P. L. On The Stability of Neutral-type Uncertain Systems With Multiple Time Delays. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_2_a4/
[1] Castelan W.B. and Infante E.F. (1979): A Lyapunov functional for matrix neutral differential equation with one delay. — J. Math. Anal. Appl., Vol. 71, No. 1, pp. 105–130.
[2] Dugard J. and Verriest E.I. (1997): Stability and Control of Time-delay Systems. — New York: Academic Press.
[3] Goubet B., Dambrin M. and Richard J.P. (1997): Stability of perturbed systems with time-varying delays. — Syst. Contr. Lett., Vol. 31, No. 3, pp. 155–163.
[4] Gu K. (1997): Discretized LMI set in the stability problem of linear uncertain time-delay systems.—Int. J. Contr., Vol. 68, No. 4, pp. 923–934.
[5] Gu K. and Niculescu S.I. (2000): Additional dynamics in transformed time-delay systems. — IEEE Trans. Automat. Contr., Vol. AC–45, No. 3, pp. 572–575.
[6] Han Q.L. (2002): Robust stability of uncertain delay-differential systems of neutral type. — Automatica, Vol. 38, No. 4, pp. 719–723.
[7] Han Q.L. (2004): A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays. —Automatica, Vol. 40, No. 10, pp. 1791–1796.
[8] He P. and Cao D.Q. (2004): Algebraic stability criteria of linear neutral systems with multiple time delays. — Appl. Math. Comput., Vol. 68, No. 155, pp. 643–653.
[9] He Y., Wu M., She J.H. and Liu G.P. (2004): Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. — Syst. Contr. Lett., Vol. 51, pp. 57–65.
[10] Lien C.H. (1999): Asymptotic criterion for neutral systems with multiple time delays. — Elec. Lett., Vol. 35, pp. 850–852.
[11] Lien C.H. and Fan K.K. (2000): Robust stability for a class of neutral time delay systems. — Proc. Automat. Contr. Conf., Hsinchu, Taiwan, pp. 576–580.
[12] Mahmound M.S. (2000): Robust Control and Filtering for Time-Delay Systems. — New York: Marcel Dekker, Inc.
[13] Niculescu S.I. (2001): Delay Effects in Stability, A Robust Stability Approach. —London: Springer.
[14] Su T.J. and Huang C.G. (1992): Robust stability of delay dependence for linear uncertain systems. — IEEE Trans. Automat. Contr., Vol. AC–37, No. 10, pp. 1656–1659.
[15] Yan J.T. (2000): Robust stability analysis of uncertain time delay systems with delay-dependence. —Elec. Lett., Vol. 37, No. 2, pp. 135–137.
[16] Yang M.S. and Liu P.L. (2002): On asymptotic stability of linear neutral delay-differential systems. — Int. J. Syst. Sci., Vol. 33, No. 11, pp. 901–907.