Monomial Subdigraphs of Reachable and Controllable Positive Discrete-time Systems
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 159-166.

Voir la notice de l'article provenant de la source Library of Science

A generic structure of reachable and controllable positive linear systems is given in terms of some characteristic components (monomial subdigraphs) of the digraph of a non-negative a pair. The properties of monomial subdigraphs are examined and used to derive reachability and controllability criteria in a digraph form for the general case when the system matrix A may contain zero columns. The graph-theoretic nature of these criteria makes them computationally more efficient than their known equivalents. The criteria identify not only the reachability and controllability properties of positive linear systems, but also their reachable and controllable parts (subsystems) when the system does not possess such properties.
Keywords: positive linear systems, reachability, controllability, system structure, monomial subdigraphs
Mots-clés : dodatni układ liniowy, osiągalność, sterowalność, struktura systemu
@article{IJAMCS_2005_15_1_a12,
     author = {Bru, R. and Cacetta, L. and Rumchev, V. G.},
     title = {Monomial {Subdigraphs} of {Reachable} and {Controllable} {Positive} {Discrete-time} {Systems}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {159--166},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a12/}
}
TY  - JOUR
AU  - Bru, R.
AU  - Cacetta, L.
AU  - Rumchev, V. G.
TI  - Monomial Subdigraphs of Reachable and Controllable Positive Discrete-time Systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2005
SP  - 159
EP  - 166
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a12/
LA  - en
ID  - IJAMCS_2005_15_1_a12
ER  - 
%0 Journal Article
%A Bru, R.
%A Cacetta, L.
%A Rumchev, V. G.
%T Monomial Subdigraphs of Reachable and Controllable Positive Discrete-time Systems
%J International Journal of Applied Mathematics and Computer Science
%D 2005
%P 159-166
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a12/
%G en
%F IJAMCS_2005_15_1_a12
Bru, R.; Cacetta, L.; Rumchev, V. G. Monomial Subdigraphs of Reachable and Controllable Positive Discrete-time Systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) no. 1, pp. 159-166. http://geodesic.mathdoc.fr/item/IJAMCS_2005_15_1_a12/

[1] Bru R., Romero S. and Sánchez E.(2000): Canonical forms for positive discrete–time linear control systems. —Lin. Alg. Appl., Vol. 310, pp. 49–71.

[2] Caccetta L. and Rumchev V.G.(1998): Reachable discrete–time positive systems with minimal dimension control sets. — Dyn. Cont. Discr. Imp. Syst.,Vol. 4, No. 4, pp. 539–552.

[3] Coxson P.G., Larson I.C. and Schneider H.(1987): Monomial patterns in the sequence Akb,—Lin. Alg. Applic., Vol. 94, pp. 89–101.

[4] Coxson P.G. and Shapiro H.(1987): Positive input reachability and controllability of positive systems. — Lin. Alg. Applic., Vol. 94, pp. 35–53.

[5] Kaczorek T. (2002): Positive 1D and 2D Systems. —- Heidelberg: Springer.

[6] Lin C.T. (1974): Structural controllability. — IEEE Trans. Automat. Contr., Vol. AC-19, No. 3, pp. 201–208.

[7] Muratori S. and Rinaldi S.(1991): Excitability, stability, and sign of equilibria in positive linear systems. — Syst. Contr. Lett., Vol. 16, pp. 59–63.

[8] Murthy D.N.P.(1986): Controllability of a linear positive dynamic system. — Int. J. Syst. Sci., Vol. 17, No. 1, pp. 49–54.

[9] Rumchev V.G. (2000): On controllability of discrete–time positive systems.—Proc. 6-th Int. Conf. Contr. Automat., Robot. and Vision, Singapore, pp. 1923–1927, (on CD-ROM).

[10] Rumchev V.G. and James D.J.G.(1989): Controllability of positive discrete–time systems. — Int. J. Contr., Vol. 50, No. 3, pp. 845–857.