Control Structure in Optimization Problems of Bar Systems
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 4, pp. 515-529.

Voir la notice de l'article provenant de la source Library of Science

Optimal design problems in mechanics can be mathematically formulated as optimal control tasks. The minimum principle is employed in solving such problems. This principle allows us to write down optimal design problems as Multipoint Boundary Value Problems (MPBVPs). The dimension of MPBVPs is an essential restriction that decides on numerical difficulties. Optimal control theory does not give much information about the control structure, i.e., about the sequence of the forms of the right-hand sides of state equations appearing successively in time. The correctness of the assumed control structure can be checked after obtaining the solution of the boundary problem. For the numerical solution, we use hybrid procedures which are a connection of the multiple shooting method with that of collocation.
Keywords: optimization, minimum principle, elastic structures
Mots-clés : optymalizacja, zasada minimum, struktura elastyczna
@article{IJAMCS_2004_14_4_a7,
     author = {Mikulski, L.},
     title = {Control {Structure} in {Optimization} {Problems} of {Bar} {Systems}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {515--529},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a7/}
}
TY  - JOUR
AU  - Mikulski, L.
TI  - Control Structure in Optimization Problems of Bar Systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2004
SP  - 515
EP  - 529
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a7/
LA  - en
ID  - IJAMCS_2004_14_4_a7
ER  - 
%0 Journal Article
%A Mikulski, L.
%T Control Structure in Optimization Problems of Bar Systems
%J International Journal of Applied Mathematics and Computer Science
%D 2004
%P 515-529
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a7/
%G en
%F IJAMCS_2004_14_4_a7
Mikulski, L. Control Structure in Optimization Problems of Bar Systems. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 4, pp. 515-529. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_4_a7/

[1] Bulirsch R. and Montrone F. and Pesch H.J. (1991): Abort landing in the presence of a windshear as a minimax optimal control problem. Part 1: Necessary conditions. — Optim. Theory Applic., Vol. 70, No. 1, pp. 1–23.

[2] Buss M., Glocker M., Hardt M., Von Stryk O., Bulirsch R., Schmidt G. (2002): Nonlinear hybrid dynamical systems: Modeling, optimal control, and applications, In: Modelling, Analysis and Design of Hybrid Systems: (S. Engell, G. Frehse, E. Schnieder, Eds.). — Berlin: Springer, pp. 311–335.

[3] Hiltman P., Chudej K., Breitner M. (1993): Eine modifizierte Mehrzielmethode zur Lösung von Mehrpunkt – Randwertproblemen – Benuzeranleitung. — Sonderforschungsbereich 255 DFG, TU München, Report 14.

[4] Hinsberger H. (1996): Ein direktes Mehrschiessverfahren zur Lösung von Optimalsteuerungsproblemen – DIRMUS – Benutzeranleitung.—TU Clausthal.

[5] Malanowski K., Maurer,H. (1998): Sensitivity analysis for optimal control problems subject to higher order state constraints. — Echtzeit-Optimierung grosser Systeme, DFG, Preprint 98–5, 1–32, available at: www.zib.de/dfg-echtzeit.

[6] Mikulski L. (1999): Optimal design of elastic continuous structures. — TU Cracow, Series Civil Engineering, Monograph 259.

[7] Oberle H.J., Grimm, W. (1989): BNDSCO – A program for the numerical solution of optimal control problems. — Deutsche Forschungsanstalt für Luft und Raumfahrt, DLR IB 515-89/22, Oberpfaffenhofen.

[8] Pesch H.J. (1994): A practical guide to the solution of reallife optimal control problems. — Contr. Cybern., Vol. 23, Nos. 1–2, pp. 7–60.

[9] Pesch H.J. (2002): Schlüssel Technologie Mathematik. — Stuttgart-Leipzig-Wiesbaden: Teubner Verlag.

[10] Von Stryk O. (2002): User’s guide DIRCOL — A direct collocation method for the numerical solution of optimal control problems. — Technische Universität Darmstadt, Fachgebiet Simulation und Systemoptimierung (SIM), Ver. 2.1.