Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_3_a0, author = {Karcz-Dul\k{e}ba, I.}, title = {Time to the convergence of evolution in the space of population states}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {279--287}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a0/} }
TY - JOUR AU - Karcz-Dulęba, I. TI - Time to the convergence of evolution in the space of population states JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 279 EP - 287 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a0/ LA - en ID - IJAMCS_2004_14_3_a0 ER -
%0 Journal Article %A Karcz-Dulęba, I. %T Time to the convergence of evolution in the space of population states %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 279-287 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a0/ %G en %F IJAMCS_2004_14_3_a0
Karcz-Dulęba, I. Time to the convergence of evolution in the space of population states. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 3, pp. 279-287. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_3_a0/
[1] Chorążyczewski A., Galar R. and Karcz-Dulęba I. (2000): Considering phenotypic evolution in the space of population states. — Proc. 5th Conf. Neural Networks and Soft Computing, Zakopane, Poland, pp. 615–620.
[2] Galar R. (1985): Handicapped individua in evolutionary processes.— Biol. Cybern., Vol. 51, No. 1, pp. 1–9.
[3] Galar R. and Karcz-Dulęba I. (1994): The evolution of two: An example of space of states approach. — Proc. 3rd Ann. Conf. Evolutionary Programming, San Diego, CA, pp. 261–268.
[4] Karcz-Dulęba I. (2000): Dynamics of evolution of population of two in the space of population states. The case of symmetrical fitness functions. — Proc. 4th Nat. Conf. Evol. Algorithms and Global Optimization, La˛dek Zdrój, Poland, pp. 115–122 (in Polish).
[5] Karcz-Dulęba I. (2002): Evolution of two-element population in the space of population states: Equilibrium states for asymmetrical fitness functions, In: Evolutionary Algorithms and Global Optimization (J. Arabas, Ed.). — Warsaw: Warsaw University of Technology Press, pp. 35–46.
[6] Karcz-Dulęba I. (2004): Asymptotic behavior of discrete dynamical system generated by simple evolutionary process. — Int. J. Appl. Math. Comp. Sci., Vol. 14, No. 1, PP. 79–90.
[7] Prugel-Bennett A. (1997): Modeling evolving populations. — J. Theor. Biol., Vol. 185, No. 1, pp. 81–95.
[8] Vose M.D. and Wright A. (1994): Simple Genetic Algorithms with Linear Fitness. — Evolut. Comput., Vol. 2, No. 4, pp. 347–368.
[9] Vose M.D. (1999): The Simple Genetic Algorithm. Foundations and Theory. — Cambridge, MA: MIT Press.