Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_2_a9, author = {Galvao, R. K. H. and Becerra, V. M. and Calado, J. M. F. and Silva, P. M.}, title = {Linear-wavelet networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {221--232}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a9/} }
TY - JOUR AU - Galvao, R. K. H. AU - Becerra, V. M. AU - Calado, J. M. F. AU - Silva, P. M. TI - Linear-wavelet networks JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 221 EP - 232 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a9/ LA - en ID - IJAMCS_2004_14_2_a9 ER -
%0 Journal Article %A Galvao, R. K. H. %A Becerra, V. M. %A Calado, J. M. F. %A Silva, P. M. %T Linear-wavelet networks %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 221-232 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a9/ %G en %F IJAMCS_2004_14_2_a9
Galvao, R. K. H.; Becerra, V. M.; Calado, J. M. F.; Silva, P. M. Linear-wavelet networks. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 221-232. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a9/
[1] Aborhey S. and Williamson D. (1978): State and parameter estimation of microbial growth processes. — Automatica, Vol. 14, No. 5, pp. 493–498.
[2] Benveniste A., Juditsky A., Delyon B., Zhang Q. and Glorennec P.Y. (1994): Wavelets in identification.— Proc. 10th IFAC Symp. Syst. Identification, Copenhagen, pp. 27–48.
[3] Cannon M. and Slotine J.-J.E. (1995): Space-frequency localized basis function networks for nonlinear system estimation and control.—Neurocomput., Vol. 9, No. 3, pp. 293–342.
[4] D’Ans G., Gottlieb D. and Kokotovic P. (1972): Optimal control of bacterial growth.—Automatica, Vol. 8, No. 6, pp. 729–736.
[5] Daubechies I. (1992): Ten Lectures on Wavelets. — Philadelphia: SIAM.
[6] Draper N.R. and Smith H. (1981): Applied Regression Analysis, 2nd Ed. — New York: Wiley.
[7] Ezekiel M. and Fox K.A. (1959): Methods of Correlation and Regression Analysis, 3rd Ed. — New York: Wiley.
[8] Galvão R.K.H. and Becerra V.M. (2002): Linear-wavelet models applied to the identification of a two-link manipulator. —Proc. 21st IASTED Int. Conf. Modelling, Identification and Control, Innsbruck, pp. 479–484.
[9] Galvão R.K.H., Yoneyama T. and Rabello T.N. (1999): Signal representation by adaptive biased wavelet expansions. — Digital Signal Process., Vol. 9, No. 4, pp. 225–240.
[10] Haykin S.S. (1998): Neural Networks: A Comprehensive Foundation. — Upper Saddle River: Prentice-Hall.
[11] Jang J.-S. R. and Sun C.-T. (1995): Neuro-fuzzy modelling and control. — Proc. IEEE, Vol. 83, No. 3, pp. 378–406.
[12] Kan K.-C. and Wong K.-W. (1998): Self-construction algorithm for synthesis of wavelet networks.—Electronic Lett., Vol. 34, No. 20, pp. 1953–1955.
[13] Lawson C.L. and Hanson R.J. (1974): Solving Least Squares Problems. — Englewood Cliffs: Prentice-Hall.
[14] Li K.C. (1986): Asymptotic optimality of cl and generalized cross-validation in ridge regression and application to the spline smoothing. — Ann. Statist., Vol. 14, No. 3, pp. 1101–1112.
[15] Liu G.P., Billings S.A. and Kadirkamanathan V. (2000): Nonlinear system identification using wavelet networks. — Int. J. Syst. Sci., Vol. 31, No. 12, pp. 1531–1541.
[16] Ljung L. (1999): System Identification: Theory for the User. — Upper Saddle River: Prentice-Hall.
[17] Naes T. and Mevik B.H. (2001): Understanding the collinearity problem in regression and discriminant analysis. — J. Chemometr., Vol. 15, No. 4, pp. 413–426.
[18] Naradaya E. (1964): On estimating regression. — Theory Prob. Applicns., Vol. 9, pp. 141–142.
[19] Narendra K.S. and Parthasarathy K. (1990): Identification and control of dynamical systems using neural networks. — IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 4–27.
[20] Poggio T. and Girosi F. (1990): Networks for approximation and learning.—Proc. IEEE, Vol. 78, No. 9, pp. 1481–1497.
[21] Rissanen J. (1978): Modeling by shortest data description. — Automatica, Vol. 14, No. 5, pp. 465–471.
[22] Rugh W.J. (1981): Nonlinear Systems Theory. The Volterra/Wiener Approach. — Baltimore: Johns Hopkins University Press.
[23] Schumaker L.L. (1981): Spline Functions: Basic Theory. — Chichester: Wiley.
[24] Souza Jr. C., Hemerly E.M. and Galvão R.K.H. (2002): Adaptive control for mobile robot using wavelet network. — IEEE Trans. Syst. Man Cybern., Part B, Vol. 32, No. 4, pp. 493–504.
[25] Takagi T. and Sugeno M. (1985): Fuzzy identification of systems and its applications to modelling and control. — IEEE Trans. Syst. Man Cybern., Vol. 15, No. 1, pp. 116-132.
[26] Watson G.S. (1964): Smooth regression analysis. — Sankhya, Ser. A, Vol. 26, No. 4, pp. 359–372.
[27] Zhang J.,Walter G.G., Miao Y. and Lee W.N.W. (1995): Wavelet neural networks for function learning.—IEEE Trans. Signal Process., Vol. 43, No. 6, pp. 1485–1496.
[28] Zhang Q. (1997): Using wavelet network in nonparametric estimation. — IEEE Trans. Neural Netw., Vol. 8, No. 2, pp. 227–236.
[29] Zhang Q. and Benveniste A. (1992): Wavelet networks.—IEEE Trans. Neural Netw., Vol. 3, No. 6, pp. 889–898.