Minimal realization for positive multivariable linear systems with delay
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 181-187.

Voir la notice de l'article provenant de la source Library of Science

The realization problem for positive multivariable discrete-time systems with one time delay is formulated and solved. Conditions for the solvability of the realization problem are established. A procedure for the computation of a minimal positive realization of a proper rational matrix is presented and illustrated by an example.
Keywords: positive realization, discrete-time system, time delay, existence, computation
Mots-clés : realizacja dodatnia, system czasu dyskretnego, czas opóźnienia
@article{IJAMCS_2004_14_2_a5,
     author = {Kaczorek, T. and Bus{\l}owicz, M.},
     title = {Minimal realization for positive multivariable linear systems with delay},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {181--187},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a5/}
}
TY  - JOUR
AU  - Kaczorek, T.
AU  - Busłowicz, M.
TI  - Minimal realization for positive multivariable linear systems with delay
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2004
SP  - 181
EP  - 187
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a5/
LA  - en
ID  - IJAMCS_2004_14_2_a5
ER  - 
%0 Journal Article
%A Kaczorek, T.
%A Busłowicz, M.
%T Minimal realization for positive multivariable linear systems with delay
%J International Journal of Applied Mathematics and Computer Science
%D 2004
%P 181-187
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a5/
%G en
%F IJAMCS_2004_14_2_a5
Kaczorek, T.; Busłowicz, M. Minimal realization for positive multivariable linear systems with delay. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 181-187. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a5/

[1] Benvenuti L. and Farina L. (2003): A tutorial on the positive realization problem. — IEEE Trans. Automat. Contr. (in press).

[2] Busłowicz M. (1982): Explicit solution of discrete-delay equations.— Found. Contr. Eng., Vol. 7, No. 2, pp. 67–71.

[3] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. — Proc. 12-th Mediterranean Conf. Control and Automation, Kasadasi, Izmir, Turkey (on CDROM).

[4] Farina L. and Rinaldi S. (2000): Positive Linear Systems; Theory and Applications.—New York: Wiley.

[5] Kaczorek T. (2002): Positive 1D and 2D Systems. — London: Springer.

[6] Kaczorek T. (2003): Some recent developments in positive systems. — Proc. 7-th Conf. Dynamical Systems Theory and Applications, Łódź, Poland, pp. 25–35.

[7] Xie G. and Wang L. (2003): Reachability and controllability of positive linear discrete-time systems with time-delays, In: Positive Systems (L. Benvenuti, A. De Santis and L. Farina, Eds.).—Berlin: Springer, pp. 377–384.