An infinite horizon predictive control algorithm based on multivariable input-output models
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 167-180.

Voir la notice de l'article provenant de la source Library of Science

In this paper an infinite horizon predictive control algorithm, for which closed loop stability is guaranteed, is developed in the framework of multivariable linear input-output models. The original infinite dimensional optimisation problem is transformed into a finite dimensional one with a penalty term. In the unconstrained case the stabilising control law, using a numerically reliable SVD decomposition, is derived as an analytical formula, calculated off-line. Considering constraints needs solving on-line a quadratic programming problem. Additionally, it is shown how free and forced responses can be calculated without the necessity of solving a matrix Diophantine equation.
Keywords: model predictive control, stability, infinite horizon, singular value decomposition, quadratic programming
Mots-clés : sterowanie predykcyjne, horyzont nieskończony, programowanie kwadratowe
@article{IJAMCS_2004_14_2_a4,
     author = {{\L}awry\'nczuk, M. and Tatjewski, P.},
     title = {An infinite horizon predictive control algorithm based on multivariable input-output models},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {167--180},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a4/}
}
TY  - JOUR
AU  - Ławryńczuk, M.
AU  - Tatjewski, P.
TI  - An infinite horizon predictive control algorithm based on multivariable input-output models
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2004
SP  - 167
EP  - 180
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a4/
LA  - en
ID  - IJAMCS_2004_14_2_a4
ER  - 
%0 Journal Article
%A Ławryńczuk, M.
%A Tatjewski, P.
%T An infinite horizon predictive control algorithm based on multivariable input-output models
%J International Journal of Applied Mathematics and Computer Science
%D 2004
%P 167-180
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a4/
%G en
%F IJAMCS_2004_14_2_a4
Ławryńczuk, M.; Tatjewski, P. An infinite horizon predictive control algorithm based on multivariable input-output models. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 167-180. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a4/

[1] Bitmead R.R., Gevers M. and Wertz V. (1990): Adaptive Optimal Control—The Thinking Man’s GPC. — Englewood Cliffs: Prentice Hall.

[2] Camacho E.F. and Bordons C. (1999): Model Predictive Control. — London: Springer.

[3] Chisci L. and Mosca E. (1994): Stabilizing I-O receding horizon control of CARMA plants.— IEEE Trans. Automat. Contr., Vol. 39, No. 3, pp. 614–618.

[4] Clarke D.W. and Scattolini R. (1991): Constrained recedinghorizon predictive control. — Proc. IEE, Part D, Vol. 138, No. 4, pp. 347–354.

[5] Clarke D.W. and Mohtadi C. (1989): Properties of generalized predictive control.— Automatica, Vol. 25, No. 6, pp. 859–875.

[6] Clarke D.W., Mohtadi C. and Tuffs P.S. (1987a): Generalized predictive control – I. The basic algorithm.— Automatica, Vol. 23, No. 2, pp. 137–148.

[7] Clarke D.W., Mohtadi C. and Tuffs P.S. (1987b): Generalized predictive control – II. Extensions and interpretations. — Automatica, Vol. 23, No. 2, pp. 149–160.

[8] Cutler C.R. and Ramaker B.L. (1980): Dynamic matrix control – A computer control algorithm. — Proc. Joint. Automat. Contr. Conf., San Francisco.

[9] Golub G.H. and Van Loan C.F. (1989): Matrix Computations. — Baltimore: The Johns Hopkins University Press.

[10] Gutman P. and Hagander P. (1985): A new design of constrained controllers for linear systems. — IEEE Trans. Automat. Contr., Vol. 30, No. 1, pp. 22–33.

[11] Henson M.A. (1998): Nonlinear model predictive control: current status and future directions. — Comput. Chem. Eng., Vol. 23, No. 2, pp. 187–202.

[12] Kailath T. (1980): Linear Systems. — Englewood Cliffs: Prentice Hall.

[13] Kwon W.H. and Byun D.G. (1989): Receding horizon tracking control as a predictive control and its stability properties. — Int. J. Contr., Vol. 50, No. 5, pp. 1807–1824.

[14] Maciejowski J.M. (2002): Predictive Control with Constraints.— Englewood Cliffs: Prentice Hall.

[15] Mayne D.Q. (2001): Control of constrained dynamic systems.— Europ. J. Contr., Vol. 7, Nos. 2–3, pp. 87–99.

[16] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: Stability and optimality.— Automatica, Vol. 36, No. 6, pp. 789–814.

[17] Morari M. and Lee J.H. (1999): Model predictive control: past, present and future. — Comput. Chem. Eng., Vol. 23, No. 4/5, pp. 667–682.

[18] Muske K.R. and Rawlings J.B. (1993): Model predictive control with linear models. — AIChE J., Vol. 39, No. 2, pp. 262–287.

[19] Ordys W.A., Hangstrup M.E. and Grimble M.J. (2000): Dynamic algorithm for linear quadratic Gaussian predictive control.—Int. J. Appl. Math. Comput. Sci., Vol. 10, No. 2, pp. 227–244.

[20] Rawlings J.B. and Muske K.R. (1993): The stability of constrained receding horizon control. — IEEE Trans. Automat. Contr., Vol. 38, No. 10, pp. 1512–1516.

[21] Rouhani R. and Mehra R.K. (1982): Model algoritmic control (MAC); Basic theoretical properties. — Automatica, Vol. 18, No. 4, pp. 401–414.

[22] Scattolini R. and Bittanti S. (1990): On the choice of the horizon in long-range predictive control – some simple criteria.— Automatica, Vol. 26, No. 5, pp. 915–917.

[23] Scokaert P.O.M. (1997): Infinite horizon generalized predictive control. — Int. J. Contr., Vol. 66, No. 1, pp. 161–175.

[24] Scokaert P.O.M. and Clarke D. W. (1994): Stabilising properties of constrained predictive control.—Proc. IEE, Part D, Vol. 141, No. 5, pp. 295–304.

[25] Sznaier M. and Damborg M.J. (1990): Heuristically enhanced feedback control of constrained discrete-time linear systems. — Automatica, Vol. 26, No. 3, pp. 521–532.

[26] Tatjewski P. (2002): Advanced Control of Industrial Processes, Structures and Algorithms. — Warszawa: Akademicka Oficyna Wydawnicza Exit (in Polish).

[27] Zafiriou E. (1990): Robust model predictive control of processes with hard constraints. — Comput. Chem. Eng., Vol. 14, Nos. 4/5, pp. 359–371.

[28] Zafiriou E. and Marchal A.L. (1991): Stability of SISO quadratic dynamic matrix control with hard output constraints. — AIChE J., Vol. 37, No. 10, pp. 1550–1560.