A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 149-159.

Voir la notice de l'article provenant de la source Library of Science

The question how the classical definition of the Smith zeros of an LTI continuous-time singular control system S(E,A,B,C,D) can be generalized and related to state-space methods is discussed. The zeros are defined as those complex numbers for which there exists a zero direction with a nonzero state-zero direction. Such a definition allows an infinite number of zeros (then the system is called degenerate). A sufficient and necessary condition for nondegeneracy is formulated. Moreover, some characterization of invariant zeros, based on the Weierstrass-Kronecker canonical form of the system and the first nonzero Markov parameter, is obtained.
Keywords: singular control systems, multivariable zeros, state-space methods, Markov parameters
Mots-clés : układ singularny, zera niezmienne, metoda przestrzeni stanu, parametry Markova
@article{IJAMCS_2004_14_2_a2,
     author = {Tokarzewski, J.},
     title = {A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {149--159},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a2/}
}
TY  - JOUR
AU  - Tokarzewski, J.
TI  - A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2004
SP  - 149
EP  - 159
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a2/
LA  - en
ID  - IJAMCS_2004_14_2_a2
ER  - 
%0 Journal Article
%A Tokarzewski, J.
%T A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy
%J International Journal of Applied Mathematics and Computer Science
%D 2004
%P 149-159
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a2/
%G en
%F IJAMCS_2004_14_2_a2
Tokarzewski, J. A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 149-159. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a2/

[1] Callier F.M. and Desoer C.A. (1982): Multivariable Feedback Systems. — New York: Springer.

[2] Ben-Israel A. and Greville T.N.E. (2002): Generalized Inverses: Theory and Applications, 2nd Ed. —New York: Wiley.

[3] Dai L. (1989): Singular Control Systems. — Berlin: Springer.

[4] Gantmacher F.R. (1988): Theory of Matrices. — Moscow: Nauka (in Russian).

[5] Kaczorek T. (1998): Computation of fundamental matrices and reachability of positive singular discrete linear systems.— Bull. Polish Acad. Sci. Techn. Sci., Vol. 46, No. 4, pp. 501–511.

[6] Kaczorek T. (1999): Control and Systems Theory. — Warsaw: Polish Scientific Publishers (in Polish).

[7] Kaczorek T. (2000): Positive One- and Two-Dimensional Systems. — Warsaw: University of Technology Press (in Polish).

[8] Kaczorek T. (2003): Decomposition of singular linear systems. — Przegląd Elektrotechniczny, Vol. LXXIX, No. 2, pp. 53–58.

[9] Misra P., Van Dooren P. and Varga A. (1994): Computation of structural invariants of generalized state-space systems.— Automatica, Vol. 30, No. 12, pp. 1921–1936.

[10] Tokarzewski J. (1998): On some characterization of invariant and decoupling zeros in singular systems. — Arch. Contr. Sci., Vol. 5, No. 3–4, pp. 145–159.

[11] Tokarzewski J. (2002a): Zeros in Linear Systems: A Geometric Approach.—Warsaw: University of Technology Press.

[12] Tokarzewski J. (2002b): Relationship between Smith zeros and invariant zeros in linear singular systems. — Proc. 8th IEEE Int. Conf. Methods and Models in Automation and Robotics, MMAR’2002, Szczecin, Poland, Vol. I, pp. 71–74.

[13] Tokarzewski J. (2003): A characterization of invariant zeros in singular systems via the first nonzero Markov parameter and algebraic criterions of nondegeneracy. — Proc. 9th IEEE Int. Conf. Methods and Models in Automation and Robotics, MMAR’2003, Międzyzdroje, Poland, Vol. I, pp. 437–442.