Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_2_a0, author = {Kalita, P.}, title = {Koiter shell governed by strongly monotone constitutive equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {127--137}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a0/} }
TY - JOUR AU - Kalita, P. TI - Koiter shell governed by strongly monotone constitutive equations JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 127 EP - 137 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a0/ LA - en ID - IJAMCS_2004_14_2_a0 ER -
Kalita, P. Koiter shell governed by strongly monotone constitutive equations. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 2, pp. 127-137. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_2_a0/
[1] Antman S.S. (1995): Nonlinear Problems of Elasticity. — New York: Springer-Verlag.
[2] Bernardou M. and Ciarlet P.G. (1976): Sur l’ellipticité du modéle lineaire de coques de W.T. Koiter, In: Computing Methods in Applied Sciences and Engineering (R. Glowinski and J.L. Lions, Eds.). — Heidelberg: Springer, Lect. Not. Econ., Vol. 134, pp. 89–136.
[3] Berne R.M. and Levy M.N. (1983): Physiology. — St. Louis: The C.V. Mosby Company.
[4] Blouza A. and Le Dret H. (1999): Existence and uniqueness for the linear Koiter model for shells with little regularity. — Quart. Appl. Math., Vol. 57, No. 2, pp. 317–337.
[5] Cemal Eringen A. (1962): Nonlinear Theory of Continuous Media.— New York: McGraw-Hill.
[6] Chapelle D. and Bathe K.J. (1998): Fundamental considerations for the finite element analysis of shell structures. — Comput. Struct., Vol. 66, No. 1, pp. 19–36.
[7] Ciarlet P.G. (2000): Mathematical Elasticity, Vol. III: Theory of Shells.—Amsterdam: Elsevier.
[8] Gajewski H., Gröger K. and Zacharias K. (1974): Nichtlineare operatorgleichungen und operatordifferentialgleichungen. —Berlin: Akademie-Verlag.
[9] Gaudiello A., Gustafsson B., Lefter C. and Mossino J. (2002): Asymptotic analysis for monotone quasilinear problems in thin multidomains. — Diff. Int. Eqns., Vol. 15, No. 5, pp. 623–640.
[10] Kalita P. (2003): Arterial wall modeled by physically nonlinear Koiter shell. — Proc. 15th Int. Conf. Computer Methods in Mechanics CMM-2003, Gliwice/Wisła, Poland, (published on CD-ROM).
[11] Kerdid N. and Mato Eiroa P. (2000): Conforming finite element approximation for shells with little regularity. — Comput. Meth. Appl. Mech. Eng., Vol. 188, No. 1–3, pp. 95–107.
[12] Koiter W.T. (1970): On the foundations of the linear theory of thin elastic shells. — Proc. Kon. Ned. Akad. Wetensch., Vol. B 73, pp. 169—195.
[13] Noll W. and Truesdell C. (1965): Encyclopedia of Physics, Vol. III/3: The Non-Linear Field Theories of Mechanics. — New York: Springer.
[14] Rudin W. (1973): Functional Analysis. —New York: Blaisdell.
[15] Schaefer R. and Sędziwy S. (1999), Filtration in cohesive soils: Mathematical model. — Comput. Assist. Mech. Eng. Sci., Vol. 6, No. 1, pp. 1–13.