Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_1_a7, author = {Tan, Y.}, title = {Time-varying time-delay estimation for nonlinear systems using neural networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {63--68}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a7/} }
TY - JOUR AU - Tan, Y. TI - Time-varying time-delay estimation for nonlinear systems using neural networks JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 63 EP - 68 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a7/ LA - en ID - IJAMCS_2004_14_1_a7 ER -
%0 Journal Article %A Tan, Y. %T Time-varying time-delay estimation for nonlinear systems using neural networks %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 63-68 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a7/ %G en %F IJAMCS_2004_14_1_a7
Tan, Y. Time-varying time-delay estimation for nonlinear systems using neural networks. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a7/
[1] Balestrino A., Verona F. and Landi A. (1988): On-line process estimation by ANNs and Smith controller design. — IEE Proc., Pt. D. Contr. Theory Appl., Vol. 145, No. 2, pp. 231–235.
[2] Ching P.C., So H.C. and Wu S.Q. (1999): On wavelet denoising and its applications to time delay estimation. — IEEE Trans. Signal Process., Vol. 47, No. 10, pp. 2879–2882.
[3] Cybenko G. (1989): Approximation by superposition of a sigmoidal function. — Math. Contr. Signal Syst., Vol. 2, No. 4, pp. 303–314.
[4] Lim T.J. and Macleod M.D. (1995): Adaptive algorithm for joint time-delay estimation and IIR filtering. — IEEE Trans. Signal Process., Vol. 43, No. 4, pp. 841–851.
[5] Reed F., Feintuch P. and Bershad N. (1981): Time-delay estimation using the LMS adaptive filter-static behavior; dynamic behavior. — IEEE Trans. Acoust. Speech Signal Process., Vol. 29, No. 3, pp. 561–576.
[6] Shor G. and Messer H. (1997): Performance evaluation of time-delay estimation in non-Gaussian conditions. — Proc. IEEE Signal ProcessingWorkshop Higher-Order Statistics, Banff, Canada, pp. 20–24.
[7] Teng F.C. and Sirisena H.R. (1988): Self-tuning PID controllers for dead time processes. — IEEE Trans. Ind. Electron., Vol. 35, No. 1, pp. 119–125.