Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_1_a4, author = {Madi, M.}, title = {Closed-form expressions for the approximation of arclength parameterization for {Bezier} curves}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {33--41}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a4/} }
TY - JOUR AU - Madi, M. TI - Closed-form expressions for the approximation of arclength parameterization for Bezier curves JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 33 EP - 41 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a4/ LA - en ID - IJAMCS_2004_14_1_a4 ER -
%0 Journal Article %A Madi, M. %T Closed-form expressions for the approximation of arclength parameterization for Bezier curves %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 33-41 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a4/ %G en %F IJAMCS_2004_14_1_a4
Madi, M. Closed-form expressions for the approximation of arclength parameterization for Bezier curves. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/IJAMCS_2004_14_1_a4/
[1] Burchard H.G., Ayers J.A., Frey W.H. and Sapidis N.S. (1994): Approximating with aesthetic constraints, In: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design (N.S. Sapidis, Ed.). —Philadelphia: SIAM, pp. 3–28.
[2] Davis P.J. (1963): Interpolation and Approximation. — New York: Blaisdell Publishing Company.
[3] Farin G. (1993): Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide. — Boston: Academic Press.
[4] Farouki R.T. (1992): Pythagorean-hodograph curves in practical Use, In: Geometry Processing for Design and Manufacturing, (R.E. Barnhill, Ed.). — Philadelphia: SIAM, pp. 3–33.
[5] Farouki R.T. (1997): Optimal Parameterizations. — Computer Aided Geometric Design, Vol. 14, No. 2, pp. 153–168.
[6] Farouki R.T. and Sakkalis T. (1991): Pythagorean hodographs. —IBM J. Res. Development, Vol. 34, No. 5, pp. 736–752.
[7] Farouki R.T. and Shah S. (1996): Real-time CNC interpolators for Pythagorean-hodograph curves. — Computer Aided Geometric Design, Vol. 13, No. 7, pp. 583–600.
[8] Foley J.D., Van Dam A., Feiner S.K. and Hughes J.F. (1992): Computer Graphics: Principles and Practice.—Reading: Addison Wesley.
[9] Guggenheimer H.W. (1963): Differential Geometry. — New York: McGraw-Hill, pp. 15–17.
[10] Madi M.M. (1996): Arclength Approximation for Reference-Point Generation.—M.Sc. Thesis, Dept. of Computer Science, University of Manitoba.
[11] Sharpe R.J. and Thorne R.W. (1982): Numerical method for extracting an arclength parameterization from parametric curves.—Computer-Aided Design, Vol. 14, No. 2, pp. 79–81.
[12] Su B-Q. and Liu D-Y. (1989): Computational Geometry: Curve and Surface Modeling.—Boston: Academic Press.
[13] Young E.C. (1993): Vector and Tensor Analysis. — New York: Marcel Dekker.