Sturm-Liouville Systems Are Riesz-Spectral Systems
International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 4, pp. 481-484
Cet article a éte moissonné depuis la source Library of Science
The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L2(a,b) and the infinitesimal generator of a C0-semigroup of bounded linear operators.
Keywords:
Sturm-Liouville system, Riesz-spectral system, infinite-dimensional state-space system, Co-semigroup
Mots-clés : matematyka
Mots-clés : matematyka
@article{IJAMCS_2003_13_4_a3,
author = {Delattre, C. and Dochain, D. and Winkin, J.},
title = {Sturm-Liouville {Systems} {Are} {Riesz-Spectral} {Systems}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {481--484},
year = {2003},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/}
}
TY - JOUR AU - Delattre, C. AU - Dochain, D. AU - Winkin, J. TI - Sturm-Liouville Systems Are Riesz-Spectral Systems JO - International Journal of Applied Mathematics and Computer Science PY - 2003 SP - 481 EP - 484 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/ LA - en ID - IJAMCS_2003_13_4_a3 ER -
%0 Journal Article %A Delattre, C. %A Dochain, D. %A Winkin, J. %T Sturm-Liouville Systems Are Riesz-Spectral Systems %J International Journal of Applied Mathematics and Computer Science %D 2003 %P 481-484 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/ %G en %F IJAMCS_2003_13_4_a3
Delattre, C.; Dochain, D.; Winkin, J. Sturm-Liouville Systems Are Riesz-Spectral Systems. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 4, pp. 481-484. http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/