Sturm-Liouville Systems Are Riesz-Spectral Systems
International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 4, pp. 481-484.

Voir la notice de l'article provenant de la source Library of Science

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L2(a,b) and the infinitesimal generator of a C0-semigroup of bounded linear operators.
Keywords: Sturm-Liouville system, Riesz-spectral system, infinite-dimensional state-space system, Co-semigroup
Mots-clés : matematyka
@article{IJAMCS_2003_13_4_a3,
     author = {Delattre, C. and Dochain, D. and Winkin, J.},
     title = {Sturm-Liouville {Systems} {Are} {Riesz-Spectral} {Systems}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {481--484},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/}
}
TY  - JOUR
AU  - Delattre, C.
AU  - Dochain, D.
AU  - Winkin, J.
TI  - Sturm-Liouville Systems Are Riesz-Spectral Systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2003
SP  - 481
EP  - 484
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/
LA  - en
ID  - IJAMCS_2003_13_4_a3
ER  - 
%0 Journal Article
%A Delattre, C.
%A Dochain, D.
%A Winkin, J.
%T Sturm-Liouville Systems Are Riesz-Spectral Systems
%J International Journal of Applied Mathematics and Computer Science
%D 2003
%P 481-484
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/
%G en
%F IJAMCS_2003_13_4_a3
Delattre, C.; Dochain, D.; Winkin, J. Sturm-Liouville Systems Are Riesz-Spectral Systems. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 4, pp. 481-484. http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_4_a3/