Gradient Observability for Diffusion Systems
International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 2, pp. 139-150.

Voir la notice de l'article provenant de la source Library of Science

The aim of this paper is to study regional gradient observability for a diffusion system and the reconstruction of the state gradient without the knowledge of the state. First, we give definitions and characterizations of these new concepts and establish necessary conditions for the sensor structure in order to obtain regional gradient observability. We also explore an approach which allows for a regional gradient reconstruction. The developed method is original and leads to a numerical algorithm illustrated by simulations.
Keywords: diffusion system, observability, regional gradient observability, gradient strategic sensor, gradient reconstruction
Mots-clés : informatyka
@article{IJAMCS_2003_13_2_a1,
     author = {Zerrik, E. H. and Bourray, H.},
     title = {Gradient {Observability} for {Diffusion} {Systems}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {139--150},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_2_a1/}
}
TY  - JOUR
AU  - Zerrik, E. H.
AU  - Bourray, H.
TI  - Gradient Observability for Diffusion Systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2003
SP  - 139
EP  - 150
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_2_a1/
LA  - en
ID  - IJAMCS_2003_13_2_a1
ER  - 
%0 Journal Article
%A Zerrik, E. H.
%A Bourray, H.
%T Gradient Observability for Diffusion Systems
%J International Journal of Applied Mathematics and Computer Science
%D 2003
%P 139-150
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_2_a1/
%G en
%F IJAMCS_2003_13_2_a1
Zerrik, E. H.; Bourray, H. Gradient Observability for Diffusion Systems. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 2, pp. 139-150. http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_2_a1/