A Functorial Approach to the Behaviour of Multidimensional Control Systems
International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 1, pp. 7-13 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

We show how to use the extension and torsion functors in order to compute the torsion submodule of a differential module associated with a multidimensional control system. In particular, we show that the concept of the weak primeness of matrices corresponds to the torsion-freeness of a certain module.
Keywords: multidimensional systems, weak primeness, controllability, algebraic analysis, torsion and extension functors, rings of differential operators
Mots-clés : automatyka, robotyka
@article{IJAMCS_2003_13_1_a0,
     author = {Pommaret, J. F. and Quadrat, A.},
     title = {A {Functorial} {Approach} to the {Behaviour} of {Multidimensional} {Control} {Systems}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {7--13},
     year = {2003},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_1_a0/}
}
TY  - JOUR
AU  - Pommaret, J. F.
AU  - Quadrat, A.
TI  - A Functorial Approach to the Behaviour of Multidimensional Control Systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2003
SP  - 7
EP  - 13
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_1_a0/
LA  - en
ID  - IJAMCS_2003_13_1_a0
ER  - 
%0 Journal Article
%A Pommaret, J. F.
%A Quadrat, A.
%T A Functorial Approach to the Behaviour of Multidimensional Control Systems
%J International Journal of Applied Mathematics and Computer Science
%D 2003
%P 7-13
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_1_a0/
%G en
%F IJAMCS_2003_13_1_a0
Pommaret, J. F.; Quadrat, A. A Functorial Approach to the Behaviour of Multidimensional Control Systems. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) no. 1, pp. 7-13. http://geodesic.mathdoc.fr/item/IJAMCS_2003_13_1_a0/