Inequality-Based Approximation of Matrix Eigenvectors
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) no. 4, pp. 533-538.

Voir la notice de l'article provenant de la source Library of Science

A novel procedure is given here for constructing non-negative functions with zero-valued global minima coinciding with eigenvectors of a general real matrix A. Some of these functions are distinct because all their local minima are also global, offering a new way of determining eigenpairs by local optimization. Apart from describing the framework of the method, the error bounds given separately for the approximation of eigenvectors and eigenvalues provide a deeper insight into the fundamentally different nature of their approximations.
Keywords: eigenvectors, eigenvalues, inequalities, error bounds, iterative methods
Mots-clés : matematyka
@article{IJAMCS_2002_12_4_a6,
     author = {Kocsor, A. and Dombi, J. and Balint, I.},
     title = {Inequality-Based {Approximation} of {Matrix} {Eigenvectors}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {533--538},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_4_a6/}
}
TY  - JOUR
AU  - Kocsor, A.
AU  - Dombi, J.
AU  - Balint, I.
TI  - Inequality-Based Approximation of Matrix Eigenvectors
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2002
SP  - 533
EP  - 538
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_4_a6/
LA  - en
ID  - IJAMCS_2002_12_4_a6
ER  - 
%0 Journal Article
%A Kocsor, A.
%A Dombi, J.
%A Balint, I.
%T Inequality-Based Approximation of Matrix Eigenvectors
%J International Journal of Applied Mathematics and Computer Science
%D 2002
%P 533-538
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_4_a6/
%G en
%F IJAMCS_2002_12_4_a6
Kocsor, A.; Dombi, J.; Balint, I. Inequality-Based Approximation of Matrix Eigenvectors. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) no. 4, pp. 533-538. http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_4_a6/