Controllability, Observability and Optimal Control of Continuous-Time 2-D Systems
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) no. 2, pp. 181-195
Voir la notice de l'article provenant de la source Library of Science
We consider linear 2-D systems of Fornasini-Marchesini type in the continuous-time case with non-constant coefficients. Using an explicit representation of the solutions by utilizing the Riemann-kernel of the equation under consideration, we obtain controllability and observability criteria in the case of the inhomogeneous equation, where control is obtained by choosing the inhomogeneity appropriately, but also for the homogeneous equation, where control is obtained by steering with Goursat data. The optimal control problem with a quadratic cost functional is also solved.
Keywords:
2-D continuous-time systems, controllability, observability, optimal control, quadratic cost
Mots-clés : informatyka
Mots-clés : informatyka
@article{IJAMCS_2002_12_2_a4,
author = {Jank, G.},
title = {Controllability, {Observability} and {Optimal} {Control} of {Continuous-Time} {2-D} {Systems}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {181--195},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_2_a4/}
}
TY - JOUR AU - Jank, G. TI - Controllability, Observability and Optimal Control of Continuous-Time 2-D Systems JO - International Journal of Applied Mathematics and Computer Science PY - 2002 SP - 181 EP - 195 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_2_a4/ LA - en ID - IJAMCS_2002_12_2_a4 ER -
%0 Journal Article %A Jank, G. %T Controllability, Observability and Optimal Control of Continuous-Time 2-D Systems %J International Journal of Applied Mathematics and Computer Science %D 2002 %P 181-195 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_2_a4/ %G en %F IJAMCS_2002_12_2_a4
Jank, G. Controllability, Observability and Optimal Control of Continuous-Time 2-D Systems. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/IJAMCS_2002_12_2_a4/