Matrix Quadratic Equations, Column/row Reduced Factorizations and an Inertia Theorem for Matrix Polynomials
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 6, pp. 1285-1310
Voir la notice de l'article provenant de la source Library of Science
It is shown that a certain Bezout operator provides a bijective correspondence between the solutions of the matrix quadratic equation and factorizatons of a certain matrix polynomial G(lambda) (which is a specification of a Popov-type function) into a product of row and column reduced polynomials. Special attention is paid to the symmetric case, i.e. to the Algebraic Riccati Equation. In particular, it is shown that extremal solutions of such equations correspond to spectral factorizations of G(lambda). The proof of these results depends heavily on a new inertia theorem for matrix polynomials which is also one of the main results in this paper.
Keywords:
matrix quadratic equations, Bezoutians, inertia, column (row) reduced polynomials, factorization, algebraic Riccati equation, extremal solutions
Mots-clés : macierz, równanie różniczkowe Riccatiego
Mots-clés : macierz, równanie różniczkowe Riccatiego
@article{IJAMCS_2001_11_6_a4,
author = {Karelin, I. and Lerer, L.},
title = {Matrix {Quadratic} {Equations,} {Column/row} {Reduced} {Factorizations} and an {Inertia} {Theorem} for {Matrix} {Polynomials}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {1285--1310},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a4/}
}
TY - JOUR AU - Karelin, I. AU - Lerer, L. TI - Matrix Quadratic Equations, Column/row Reduced Factorizations and an Inertia Theorem for Matrix Polynomials JO - International Journal of Applied Mathematics and Computer Science PY - 2001 SP - 1285 EP - 1310 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a4/ LA - en ID - IJAMCS_2001_11_6_a4 ER -
%0 Journal Article %A Karelin, I. %A Lerer, L. %T Matrix Quadratic Equations, Column/row Reduced Factorizations and an Inertia Theorem for Matrix Polynomials %J International Journal of Applied Mathematics and Computer Science %D 2001 %P 1285-1310 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a4/ %G en %F IJAMCS_2001_11_6_a4
Karelin, I.; Lerer, L. Matrix Quadratic Equations, Column/row Reduced Factorizations and an Inertia Theorem for Matrix Polynomials. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 6, pp. 1285-1310. http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a4/