Szego's First Limit Theorem in Terms of a Realization of a Continuous-Time Time-Varying System
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 6, pp. 1261-1276
Cet article a éte moissonné depuis la source Library of Science
It is shown that the limit in an abstract version of Szego's limit theorem can be expressed in terms of the antistable dynamics of the system. When the system dynamics are regular, it is shown that the limit equals the difference between the antistable Lyapunov exponents of the system and those of its inverse. In the general case, the elements of the dichotomy spectrum give lower and upper bounds.
Keywords:
time varying systems, exponential dichotomies, coprime, inner/outer factorizations
Mots-clés : system opóźniania, teoria systemów
Mots-clés : system opóźniania, teoria systemów
@article{IJAMCS_2001_11_6_a2,
author = {Iglesias, P. A. and Zang, G.},
title = {Szego's {First} {Limit} {Theorem} in {Terms} of a {Realization} of a {Continuous-Time} {Time-Varying} {System}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {1261--1276},
year = {2001},
volume = {11},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a2/}
}
TY - JOUR AU - Iglesias, P. A. AU - Zang, G. TI - Szego's First Limit Theorem in Terms of a Realization of a Continuous-Time Time-Varying System JO - International Journal of Applied Mathematics and Computer Science PY - 2001 SP - 1261 EP - 1276 VL - 11 IS - 6 UR - http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a2/ LA - en ID - IJAMCS_2001_11_6_a2 ER -
%0 Journal Article %A Iglesias, P. A. %A Zang, G. %T Szego's First Limit Theorem in Terms of a Realization of a Continuous-Time Time-Varying System %J International Journal of Applied Mathematics and Computer Science %D 2001 %P 1261-1276 %V 11 %N 6 %U http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a2/ %G en %F IJAMCS_2001_11_6_a2
Iglesias, P. A.; Zang, G. Szego's First Limit Theorem in Terms of a Realization of a Continuous-Time Time-Varying System. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 6, pp. 1261-1276. http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_6_a2/