Computing Generalized Inverse Systems Using Matrix Pencil Methods
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 5, pp. 1055-1068.

Voir la notice de l'article provenant de la source Library of Science

We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil to appropriate Kronecker-like forms.
Keywords: system inversion, rational matrices, descriptor systems, numerical methods
Mots-clés : macierz, metody numeryczne
@article{IJAMCS_2001_11_5_a2,
     author = {Varga, A.},
     title = {Computing {Generalized} {Inverse} {Systems} {Using} {Matrix} {Pencil} {Methods}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {1055--1068},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_5_a2/}
}
TY  - JOUR
AU  - Varga, A.
TI  - Computing Generalized Inverse Systems Using Matrix Pencil Methods
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2001
SP  - 1055
EP  - 1068
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_5_a2/
LA  - en
ID  - IJAMCS_2001_11_5_a2
ER  - 
%0 Journal Article
%A Varga, A.
%T Computing Generalized Inverse Systems Using Matrix Pencil Methods
%J International Journal of Applied Mathematics and Computer Science
%D 2001
%P 1055-1068
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_5_a2/
%G en
%F IJAMCS_2001_11_5_a2
Varga, A. Computing Generalized Inverse Systems Using Matrix Pencil Methods. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 5, pp. 1055-1068. http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_5_a2/