Computing Generalized Inverse Systems Using Matrix Pencil Methods
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 5, pp. 1055-1068
Voir la notice de l'article provenant de la source Library of Science
We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil to appropriate Kronecker-like forms.
Keywords:
system inversion, rational matrices, descriptor systems, numerical methods
Mots-clés : macierz, metody numeryczne
Mots-clés : macierz, metody numeryczne
@article{IJAMCS_2001_11_5_a2,
author = {Varga, A.},
title = {Computing {Generalized} {Inverse} {Systems} {Using} {Matrix} {Pencil} {Methods}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {1055--1068},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_5_a2/}
}
TY - JOUR AU - Varga, A. TI - Computing Generalized Inverse Systems Using Matrix Pencil Methods JO - International Journal of Applied Mathematics and Computer Science PY - 2001 SP - 1055 EP - 1068 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_5_a2/ LA - en ID - IJAMCS_2001_11_5_a2 ER -
Varga, A. Computing Generalized Inverse Systems Using Matrix Pencil Methods. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 5, pp. 1055-1068. http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_5_a2/