Recursive Identification of Wiener Systems
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 4, pp. 977-991.

Voir la notice de l'article provenant de la source Library of Science

A Wiener system, i.e. a cascade system consisting of a linear dynamic subsystem and a nonlinear memoryless subsystem is identified. The a priori information is nonparametric, i.e. neither the functional form of the nonlinear characteristic nor the order of the dynamic part are known. Both the input signal and the disturbance are Gaussian white random processes. Recursive algorithms to estimate the nonlinear characteristic are proposed and their convergence is shown. Results of numerical simulation are also given. A known algorithm recovering the impulse response of the dynamic part is presented in a recursive form.
Keywords: Wiener system, system identification, recursive identification, nonparametric identification
Mots-clés : system Wienera, metoda nieparametryczna
@article{IJAMCS_2001_11_4_a11,
     author = {Greblicki, W.},
     title = {Recursive {Identification} of {Wiener} {Systems}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {977--991},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_4_a11/}
}
TY  - JOUR
AU  - Greblicki, W.
TI  - Recursive Identification of Wiener Systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2001
SP  - 977
EP  - 991
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_4_a11/
LA  - en
ID  - IJAMCS_2001_11_4_a11
ER  - 
%0 Journal Article
%A Greblicki, W.
%T Recursive Identification of Wiener Systems
%J International Journal of Applied Mathematics and Computer Science
%D 2001
%P 977-991
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_4_a11/
%G en
%F IJAMCS_2001_11_4_a11
Greblicki, W. Recursive Identification of Wiener Systems. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) no. 4, pp. 977-991. http://geodesic.mathdoc.fr/item/IJAMCS_2001_11_4_a11/