Optimal Shape Design for Elliptic Equations Via Bie-Methods
International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 3, pp. 487-516.

Voir la notice de l'article provenant de la source Library of Science

A special description of the boundary variation in a shape optimization problem is investigated. This, together with the use of a potential theory for the state, result in natural embedding of the problem in a Banach space. Therefore, standard differential calculus can be applied in order to prove the Frechet-differentiability of the cost function for appropriately chosen data (sufficiently smooth). Moreover, necessary optimality conditions are obtained in a similar way as in other approaches, and are expressed in terms of an adjoint state for more regular data.
Keywords: optimal shape design, fundamental solution, boundary integral equation, first-order necessary condition
Mots-clés : rozwiązanie podstawowe, równanie całkowe
@article{IJAMCS_2000_10_3_a2,
     author = {Eppler, K.},
     title = {Optimal {Shape} {Design} for {Elliptic} {Equations} {Via} {Bie-Methods}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {487--516},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_3_a2/}
}
TY  - JOUR
AU  - Eppler, K.
TI  - Optimal Shape Design for Elliptic Equations Via Bie-Methods
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2000
SP  - 487
EP  - 516
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_3_a2/
LA  - en
ID  - IJAMCS_2000_10_3_a2
ER  - 
%0 Journal Article
%A Eppler, K.
%T Optimal Shape Design for Elliptic Equations Via Bie-Methods
%J International Journal of Applied Mathematics and Computer Science
%D 2000
%P 487-516
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_3_a2/
%G en
%F IJAMCS_2000_10_3_a2
Eppler, K. Optimal Shape Design for Elliptic Equations Via Bie-Methods. International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 3, pp. 487-516. http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_3_a2/