Optimal Shape Design for Elliptic Equations Via Bie-Methods
International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 3, pp. 487-516
Voir la notice de l'article provenant de la source Library of Science
A special description of the boundary variation in a shape optimization problem is investigated. This, together with the use of a potential theory for the state, result in natural embedding of the problem in a Banach space. Therefore, standard differential calculus can be applied in order to prove the Frechet-differentiability of the cost function for appropriately chosen data (sufficiently smooth). Moreover, necessary optimality conditions are obtained in a similar way as in other approaches, and are expressed in terms of an adjoint state for more regular data.
Keywords:
optimal shape design, fundamental solution, boundary integral equation, first-order necessary condition
Mots-clés : rozwiązanie podstawowe, równanie całkowe
Mots-clés : rozwiązanie podstawowe, równanie całkowe
@article{IJAMCS_2000_10_3_a2,
author = {Eppler, K.},
title = {Optimal {Shape} {Design} for {Elliptic} {Equations} {Via} {Bie-Methods}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {487--516},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_3_a2/}
}
TY - JOUR AU - Eppler, K. TI - Optimal Shape Design for Elliptic Equations Via Bie-Methods JO - International Journal of Applied Mathematics and Computer Science PY - 2000 SP - 487 EP - 516 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_3_a2/ LA - en ID - IJAMCS_2000_10_3_a2 ER -
Eppler, K. Optimal Shape Design for Elliptic Equations Via Bie-Methods. International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 3, pp. 487-516. http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_3_a2/