Robust Dynamic Input Reconstruction for Delay Systems
International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 2, pp. 283-307
Cet article a éte moissonné depuis la source Library of Science
A problem of reconstruction of a non-observable control input for a system with a time delay is analyzed within the framework of the dynamical input reconstruction approach (see Kryazhimskii and Osipov, 1987; Osipov and Kryazhimskii, 1995; Osipov et al., 1991). In (Maksimov, 1987; 1988) methods of dynamical input reconstruction were described for delay systems with fully observable states. The present paper provides an input reconstruction algorithm for partially observable systems. The algorithm is robust to the observation perturbations.
Keywords:
delay system, input reconstruction, observation, robust algorithm
Mots-clés : system opóźniania, obserwacja
Mots-clés : system opóźniania, obserwacja
@article{IJAMCS_2000_10_2_a4,
author = {Kappel, F. and Maksimov, V.},
title = {Robust {Dynamic} {Input} {Reconstruction} for {Delay} {Systems}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {283--307},
year = {2000},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a4/}
}
TY - JOUR AU - Kappel, F. AU - Maksimov, V. TI - Robust Dynamic Input Reconstruction for Delay Systems JO - International Journal of Applied Mathematics and Computer Science PY - 2000 SP - 283 EP - 307 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a4/ LA - en ID - IJAMCS_2000_10_2_a4 ER -
Kappel, F.; Maksimov, V. Robust Dynamic Input Reconstruction for Delay Systems. International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 2, pp. 283-307. http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a4/