A Stabilizing Control Law for Invariant Systems on Lie Groups
International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 2, pp. 273-282
Cet article a éte moissonné depuis la source Library of Science
This paper deals with the stabilizability of invariant control systems defined on Lie groups. A stabilization technique is presented which, under certain hypotheses, can lead to a criterion assuring the existence of a feedback controller which steers every initial condition to a specified target point of the state space of these systems.
Keywords:
invariant systems, Lie groups, stabilization, feedback controller
Mots-clés : układ niezmienny, grupa Liego, sterowanie zamknięte
Mots-clés : układ niezmienny, grupa Liego, sterowanie zamknięte
@article{IJAMCS_2000_10_2_a3,
author = {Apostolou, N. and Kazakos, D.},
title = {A {Stabilizing} {Control} {Law} for {Invariant} {Systems} on {Lie} {Groups}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {273--282},
year = {2000},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a3/}
}
TY - JOUR AU - Apostolou, N. AU - Kazakos, D. TI - A Stabilizing Control Law for Invariant Systems on Lie Groups JO - International Journal of Applied Mathematics and Computer Science PY - 2000 SP - 273 EP - 282 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a3/ LA - en ID - IJAMCS_2000_10_2_a3 ER -
Apostolou, N.; Kazakos, D. A Stabilizing Control Law for Invariant Systems on Lie Groups. International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 2, pp. 273-282. http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a3/