The Gram-Schmidt Method in the Identification of a Generalized Control System
International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 2, pp. 245-271
Voir la notice de l'article provenant de la source Library of Science
This article discusses the identification of a generalized linear control system described in the Bittner operational calculus by an abstract linear differential equation with constant coefficients. The identification problem leads to that of the best approximation in the vector space l_m^2 and is solved by using the Gram-Schmidt orthonormalization method. The classical Strejc method and the Shinbrot modulating function method are generalized here.
Keywords:
operational calculus, derivative, integral, limit condition, control system, identification, orthonormalization method
Mots-clés : rachunek operatorowy, pochodna, system sterowania
Mots-clés : rachunek operatorowy, pochodna, system sterowania
@article{IJAMCS_2000_10_2_a2,
author = {Wysocki, H.},
title = {The {Gram-Schmidt} {Method} in the {Identification} of a {Generalized} {Control} {System}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {245--271},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a2/}
}
TY - JOUR AU - Wysocki, H. TI - The Gram-Schmidt Method in the Identification of a Generalized Control System JO - International Journal of Applied Mathematics and Computer Science PY - 2000 SP - 245 EP - 271 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a2/ LA - en ID - IJAMCS_2000_10_2_a2 ER -
%0 Journal Article %A Wysocki, H. %T The Gram-Schmidt Method in the Identification of a Generalized Control System %J International Journal of Applied Mathematics and Computer Science %D 2000 %P 245-271 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a2/ %G en %F IJAMCS_2000_10_2_a2
Wysocki, H. The Gram-Schmidt Method in the Identification of a Generalized Control System. International Journal of Applied Mathematics and Computer Science, Tome 10 (2000) no. 2, pp. 245-271. http://geodesic.mathdoc.fr/item/IJAMCS_2000_10_2_a2/