Feedback Stabilization of Continuous Systems by Adding an Integrator
International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 4, pp. 871-881
Cet article a éte moissonné depuis la source Library of Science
This note is devoted to the problem of global stabilization of continuous systems by adding an integrator. The goal is to prove that if a continuous non-linear system dot x =f(x,u) is globally asymptotically stable at the origin for u equiv 0, then the augmented system obtained by adding an integrator is stabilizable by means of a continuous feedback.
Keywords:
feedback stabilization, nonlinear systems, continuous systems, Lyapunov function
@article{IJAMCS_1999_9_4_a7,
author = {Outbib, R. and Aggoune, W.},
title = {Feedback {Stabilization} of {Continuous} {Systems} by {Adding} an {Integrator}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {871--881},
year = {1999},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_4_a7/}
}
TY - JOUR AU - Outbib, R. AU - Aggoune, W. TI - Feedback Stabilization of Continuous Systems by Adding an Integrator JO - International Journal of Applied Mathematics and Computer Science PY - 1999 SP - 871 EP - 881 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_4_a7/ LA - en ID - IJAMCS_1999_9_4_a7 ER -
%0 Journal Article %A Outbib, R. %A Aggoune, W. %T Feedback Stabilization of Continuous Systems by Adding an Integrator %J International Journal of Applied Mathematics and Computer Science %D 1999 %P 871-881 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_4_a7/ %G en %F IJAMCS_1999_9_4_a7
Outbib, R.; Aggoune, W. Feedback Stabilization of Continuous Systems by Adding an Integrator. International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 4, pp. 871-881. http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_4_a7/