Artificial Intelligence Approaches to Fault Diagnosis for Dynamic Systems
International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 3, pp. 471-518.

Voir la notice de l'article provenant de la source Library of Science

Recent approaches to fault detection and isolation (FDI) for dynamic systems using methods of integrating quantitative and qualitative model information, based upon artificial intelligence (AI) techniques are surveyed. In this study, the use of AI methods is considered an important extension to the quantitative model-based approach for residual generation in FDI. When quantitative models are not readily available, a correctly trained artificial neural network (ANN) can be used as a non-linear dynamic model of the system. However, the neural network does not easily provide insight into model behaviour; the model is explicit rather than implicit in form. This main difficulty can be overcome using qualitative modelling or rule-based inference methods. For example, fuzzy logic can be used together with state-space models or neural networks to enhance FDI diagnostic reasoning capabilities. The paper discusses the properties of several methods of combining quantitative and qualitative system information and their practical value for fault diagnosis of real process systems.
Keywords: artificial intelligence methods, fault diagnosis, residual generation, fuzzy modelling, neuro-fuzzy systems
Mots-clés : metoda sztucznej inteligencji, rozpoznanie błędu, modelowanie rozmyte, system rozmyty
@article{IJAMCS_1999_9_3_a0,
     author = {Patton, R. J. and Lopez-Toribio, C. J. and Uppal, F. J.},
     title = {Artificial {Intelligence} {Approaches} to {Fault} {Diagnosis} for {Dynamic} {Systems}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {471--518},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_3_a0/}
}
TY  - JOUR
AU  - Patton, R. J.
AU  - Lopez-Toribio, C. J.
AU  - Uppal, F. J.
TI  - Artificial Intelligence Approaches to Fault Diagnosis for Dynamic Systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 1999
SP  - 471
EP  - 518
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_3_a0/
LA  - en
ID  - IJAMCS_1999_9_3_a0
ER  - 
%0 Journal Article
%A Patton, R. J.
%A Lopez-Toribio, C. J.
%A Uppal, F. J.
%T Artificial Intelligence Approaches to Fault Diagnosis for Dynamic Systems
%J International Journal of Applied Mathematics and Computer Science
%D 1999
%P 471-518
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_3_a0/
%G en
%F IJAMCS_1999_9_3_a0
Patton, R. J.; Lopez-Toribio, C. J.; Uppal, F. J. Artificial Intelligence Approaches to Fault Diagnosis for Dynamic Systems. International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 3, pp. 471-518. http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_3_a0/