Multisine Approximation of Multivariate Orthogonal Random Processes
International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 2, pp. 401-419
Voir la notice de l'article provenant de la source Library of Science
An approach to the synthesis and simulation of wide-sense stationary multivariate orthogonal random processes defined by their power spectral density matrices is presented. The approach is based on approximating the non-parametric power spectral density representation by the periodogram matrix of a multivariate orthogonal multisine random time-series. This periodogram matrix is used to construct the corresponding spectrum of the multivariate orthogonal multisine random time-series (synthesis). Application of the inverse finite discrete Fourier transform to this spectrum results in a multivariate orthogonal multisine random time-series with the predefined periodogram matrix (simulation). The properties of multivariate orthogonal multisine random process approximations obtained in this way are discussed. Attention is paid to asymptotic gaussianess.
Keywords:
simulation random processes, multivariate orthogonal random processes, simulated indentification, multisine random time-series, fast Fourier transform
Mots-clés : proces stochastyczny, procesy wielowymarowe, transformata Fouriera
Mots-clés : proces stochastyczny, procesy wielowymarowe, transformata Fouriera
@article{IJAMCS_1999_9_2_a9,
author = {Figwer, J.},
title = {Multisine {Approximation} of {Multivariate} {Orthogonal} {Random} {Processes}},
journal = {International Journal of Applied Mathematics and Computer Science},
pages = {401--419},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_2_a9/}
}
TY - JOUR AU - Figwer, J. TI - Multisine Approximation of Multivariate Orthogonal Random Processes JO - International Journal of Applied Mathematics and Computer Science PY - 1999 SP - 401 EP - 419 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_2_a9/ LA - en ID - IJAMCS_1999_9_2_a9 ER -
Figwer, J. Multisine Approximation of Multivariate Orthogonal Random Processes. International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 2, pp. 401-419. http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_2_a9/