Multisine Approximation of Multivariate Orthogonal Random Processes
International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 2, pp. 401-419.

Voir la notice de l'article provenant de la source Library of Science

An approach to the synthesis and simulation of wide-sense stationary multivariate orthogonal random processes defined by their power spectral density matrices is presented. The approach is based on approximating the non-parametric power spectral density representation by the periodogram matrix of a multivariate orthogonal multisine random time-series. This periodogram matrix is used to construct the corresponding spectrum of the multivariate orthogonal multisine random time-series (synthesis). Application of the inverse finite discrete Fourier transform to this spectrum results in a multivariate orthogonal multisine random time-series with the predefined periodogram matrix (simulation). The properties of multivariate orthogonal multisine random process approximations obtained in this way are discussed. Attention is paid to asymptotic gaussianess.
Keywords: simulation random processes, multivariate orthogonal random processes, simulated indentification, multisine random time-series, fast Fourier transform
Mots-clés : proces stochastyczny, procesy wielowymarowe, transformata Fouriera
@article{IJAMCS_1999_9_2_a9,
     author = {Figwer, J.},
     title = {Multisine {Approximation} of {Multivariate} {Orthogonal} {Random} {Processes}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {401--419},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_2_a9/}
}
TY  - JOUR
AU  - Figwer, J.
TI  - Multisine Approximation of Multivariate Orthogonal Random Processes
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 1999
SP  - 401
EP  - 419
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_2_a9/
LA  - en
ID  - IJAMCS_1999_9_2_a9
ER  - 
%0 Journal Article
%A Figwer, J.
%T Multisine Approximation of Multivariate Orthogonal Random Processes
%J International Journal of Applied Mathematics and Computer Science
%D 1999
%P 401-419
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_2_a9/
%G en
%F IJAMCS_1999_9_2_a9
Figwer, J. Multisine Approximation of Multivariate Orthogonal Random Processes. International Journal of Applied Mathematics and Computer Science, Tome 9 (1999) no. 2, pp. 401-419. http://geodesic.mathdoc.fr/item/IJAMCS_1999_9_2_a9/