Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2024_64_a4, author = {M. M. Matyoqubov}, title = {Integration of the {Korteweg{\textendash}de} {Vries} type equations with a loaded term in the class of periodic functions}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {60--69}, publisher = {mathdoc}, volume = {64}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a4/} }
TY - JOUR AU - M. M. Matyoqubov TI - Integration of the Korteweg–de Vries type equations with a loaded term in the class of periodic functions JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2024 SP - 60 EP - 69 VL - 64 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a4/ LA - ru ID - IIMI_2024_64_a4 ER -
%0 Journal Article %A M. M. Matyoqubov %T Integration of the Korteweg–de Vries type equations with a loaded term in the class of periodic functions %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2024 %P 60-69 %V 64 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a4/ %G ru %F IIMI_2024_64_a4
M. M. Matyoqubov. Integration of the Korteweg–de Vries type equations with a loaded term in the class of periodic functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 60-69. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a4/
[1] Novikov S.P., “The periodic problem for the Korteweg–de Vries equation”, Functional Analysis and Its Applications, 8:3 (1974), 236–246 | DOI | MR | Zbl
[2] Dubrovin B.A. Novikov S.P., “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation”, Soviet Physics JETP, 40:6 (1974), 1058–1063 | MR
[3] Marchenko V.A., “The periodic Korteweg–de Vries problem”, Mathematics of the USSR–Sbornik, 24:3 (1974), 319–344 | DOI | MR | Zbl
[4] Dubrovin B.A., “Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials”, Functional Analysis and Its Applications, 9:3 (1975), 215–223 | DOI | MR | Zbl
[5] Its A.R., Matveev V.B., “Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation”, Theoretical and Mathematical Physics, 23:1 (1975), 343–355 | DOI | MR
[6] Lax P.D., “Periodic solutions of the KdV equations”, Lectures in Applied Mathematics, 15 (1974), 85–96 | MR
[7] Lax P.D., “Periodic solutions of the KdV equation”, Communications on Pure and Applied Mathematics, 28:1 (1975), 141–188 | DOI | MR | Zbl
[8] McKean H.P., Trubowitz E., “Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points”, Communications on Pure and Applied Mathematics, 29:2 (1976), 143–226 | DOI | MR | Zbl
[9] Levitan B.M., Sargsyan I.S., Sturm–Liouville and Dirac operators, Nauka, Moscow, 1988 | MR
[10] Stankevich I.V., “A certain inverse spectral analysis problem for Hill’s equation”, Doklady Akademii Nauk SSSR, 192:1 (1970), 34–37 (in Russian) | Zbl
[11] Trubowitz E., “The inverse problem for periodic potentials”, Communications on Pure and Applied Mathematics, 30:3 (1977), 321–337 | DOI | MR | Zbl
[12] Hochstadt H., “A generalization of Borg’s inverse theorem for Hill’s equations”, Journal of Mathematical Analysis and Applications, 102:2 (1984), 599–605 | DOI | MR | Zbl
[13] Khasanov A.B., Matyakubov M.M., “Integration of the nonlinear Korteweg–De Vries equation with an additional term”, Theoretical and Mathematical Physics, 203:2 (2020), 596–607 | DOI | DOI | MR | Zbl
[14] Yakhshimuratov A.B., Matyokubov M.M., “Integration of a loaded Korteweg–de Vries equation in a class of periodic functions”, Russian Mathematics, 60:2 (2016), 72–76 | DOI | MR | Zbl
[15] Khasanov A.B., Khasanov T.G., “Integration of the nonlinear Korteweg–de Vries equation with a loaded term and sourse”, Journal of Applied and Industrial Mathematics, 16:2 (2022), 227–239 | DOI | MR | Zbl
[16] Khasanov A.B., Hoitmetov U.A., “Integration of the general loaded Korteweg–de Vries equation with an integral type source in the class of rapidly decreasing complex-valued functions”, Russian Mathematics, 65:7 (2021), 43–57 | DOI | MR | Zbl
[17] Rodriguez M., Li J., Qiao Z., “Negative order KdV equation with no solitary traveling waves”, Mathematics, 10:1 (2022), 48 | DOI
[18] Urazboev G.U., Khasanov M.M., Baltaeva I.I., “Integration of the negative order Korteweg–de Vries equation with a special source”, Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 31–43 | DOI | MR | Zbl