Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2024_64_a3, author = {N. I. Korobeinikova}, title = {On a discrete {Schr\"odinger} equation for a quantum dot with a nonlocal potential}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {48--59}, publisher = {mathdoc}, volume = {64}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/} }
TY - JOUR AU - N. I. Korobeinikova TI - On a discrete Schrödinger equation for a quantum dot with a nonlocal potential JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2024 SP - 48 EP - 59 VL - 64 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/ LA - ru ID - IIMI_2024_64_a3 ER -
%0 Journal Article %A N. I. Korobeinikova %T On a discrete Schrödinger equation for a quantum dot with a nonlocal potential %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2024 %P 48-59 %V 64 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/ %G ru %F IIMI_2024_64_a3
N. I. Korobeinikova. On a discrete Schrödinger equation for a quantum dot with a nonlocal potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 48-59. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/
[1] Ashida Yuto, Gong Zongping, Ueda Masahito, “Non-Hermitian physics”, Advances in Physics, 69:3 (2020), 249–435 | DOI
[2] Okuma Nobuyuki, Sato Masatoshi, “Non-Hermitian topological phenomena: a review”, Annual Review of Condensed Matter Physics, 14 (2023), 83–107 | DOI
[3] Bergholtz E.J., Budich J.C., Kunst F.K., “Exceptional topology of non-Hermitian systems”, Reviews of Modern Physics, 93:1 (2021), 015005 | DOI | MR
[4] Lin Rijia, Tai Tommy, Li Linhu, Lee Ching Hua, “Topological non-Hermitian skin effect”, Frontiers of Physics, 18:5 (2023), 53605 | DOI
[5] von Oppen F., Peng Yang, Pientka F., “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics, Oxford University Press, Oxford, 2017, 387–450 | DOI
[6] Baranova L.Y., Chuburin Y.P., “Quasi-levels of the two-particle discrete Schrodinger operator with a perturbed periodic potential”, Journal of Physics A: Mathematical and Theoretical, 41:43 (2008), 435205 | DOI | MR | Zbl
[7] Chuburin Yu.P., “A discrete Schrödinger operator on a graph”, Theoretical and Mathematical Physics, 165:1 (2010), 1335–1347 | DOI | DOI | MR | Zbl
[8] Dey Moumita, Maiti S.K., Karmakar S.N., “Spin transport through a quantum network: Effects of Rashba spin-orbit interaction and Aharonov–Bohm flux”, Journal of Applied Physics, 109 (2011), 024304 | DOI
[9] Chuburin Yu.P., Tinyukova T.S., “Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 34:2 (2024), 286–298 | DOI | MR
[10] Chuburin Yu.P., Tinyukova T.S., “Zero-energy states in the Kitaev finite and semi-infinite model”, Physica E: Low-dimensional Systems and Nanostructures, 146 (2023), 115528 | DOI
[11] Tinyukova T.S., Chuburin Yu.P., “Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 62 (2023), 87–95 (in Russian) | DOI | Zbl
[12] Chuburin Yu.P., Tinyukova T.S., “The emergence of bound states in a superconducting gap at the topological insulator edge”, Physics Letters A, 384:27 (2020), 126694 | DOI | MR
[13] Reed M., Simon B., Methods of modern mathematical physics, v. 1, Functional analysis, Elsevier Science, 1978 | MR | MR
[14] Reed M., Simon B., Methods of modern mathematical physics, v. 4, Analysis of operators, Elsevier Science, 1978 | MR | MR
[15] Tinyukova T.S., “Scattering in the case of the discrete Schrödinger operator for intersected quantum wires”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2012, no. 3, 74–84 (in Russian) | Zbl
[16] Miroshnichenko A.E., Flach S., Kivshar Yu.S., “Fano resonances in nanoscale structures”, Reviews of Modern Physics, 82:3 (2010), 2257–2296 | DOI
[17] Lv Y.-N., Liu A.-W., Tan Y., Hu C.-L., Hua T.-P., Zou X.-B., Sun Y.R., Zou C.-L., Guo G.-C., Hu S.-M., “Fano-like resonance due to interference with distant transitions”, Physical Review Letters, 129:16 (2022), 163201 | DOI | MR