On a discrete Schrödinger equation for a quantum dot with a nonlocal potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the discrete Schrödinger equation. This is the characteristic equation for a Schrödinger operator of a certain type. It corresponds to a mathematical model that describes nanoscale devices that regulate electron transport using, for example, the Aharonov–Bohm effect. We study the general spectral properties of the operator, find eigenvalues and resonances, and investigate the scattering problem. In particular, conditions for complete transmission (i.e., transmission with probability equal to one) are found, and the possibility of Fano resonance is indicated.
Keywords: discrete Schrödinger operator, resonance, eigenvalue, discrete Lippmann–Schwinger equation, Fano resonance
@article{IIMI_2024_64_a3,
     author = {N. I. Korobeinikova},
     title = {On a discrete {Schr\"odinger} equation for a quantum dot with a nonlocal potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {64},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/}
}
TY  - JOUR
AU  - N. I. Korobeinikova
TI  - On a discrete Schrödinger equation for a quantum dot with a nonlocal potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 48
EP  - 59
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/
LA  - ru
ID  - IIMI_2024_64_a3
ER  - 
%0 Journal Article
%A N. I. Korobeinikova
%T On a discrete Schrödinger equation for a quantum dot with a nonlocal potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 48-59
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/
%G ru
%F IIMI_2024_64_a3
N. I. Korobeinikova. On a discrete Schrödinger equation for a quantum dot with a nonlocal potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 48-59. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a3/

[1] Ashida Yuto, Gong Zongping, Ueda Masahito, “Non-Hermitian physics”, Advances in Physics, 69:3 (2020), 249–435 | DOI

[2] Okuma Nobuyuki, Sato Masatoshi, “Non-Hermitian topological phenomena: a review”, Annual Review of Condensed Matter Physics, 14 (2023), 83–107 | DOI

[3] Bergholtz E.J., Budich J.C., Kunst F.K., “Exceptional topology of non-Hermitian systems”, Reviews of Modern Physics, 93:1 (2021), 015005 | DOI | MR

[4] Lin Rijia, Tai Tommy, Li Linhu, Lee Ching Hua, “Topological non-Hermitian skin effect”, Frontiers of Physics, 18:5 (2023), 53605 | DOI

[5] von Oppen F., Peng Yang, Pientka F., “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics, Oxford University Press, Oxford, 2017, 387–450 | DOI

[6] Baranova L.Y., Chuburin Y.P., “Quasi-levels of the two-particle discrete Schrodinger operator with a perturbed periodic potential”, Journal of Physics A: Mathematical and Theoretical, 41:43 (2008), 435205 | DOI | MR | Zbl

[7] Chuburin Yu.P., “A discrete Schrödinger operator on a graph”, Theoretical and Mathematical Physics, 165:1 (2010), 1335–1347 | DOI | DOI | MR | Zbl

[8] Dey Moumita, Maiti S.K., Karmakar S.N., “Spin transport through a quantum network: Effects of Rashba spin-orbit interaction and Aharonov–Bohm flux”, Journal of Applied Physics, 109 (2011), 024304 | DOI

[9] Chuburin Yu.P., Tinyukova T.S., “Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 34:2 (2024), 286–298 | DOI | MR

[10] Chuburin Yu.P., Tinyukova T.S., “Zero-energy states in the Kitaev finite and semi-infinite model”, Physica E: Low-dimensional Systems and Nanostructures, 146 (2023), 115528 | DOI

[11] Tinyukova T.S., Chuburin Yu.P., “Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 62 (2023), 87–95 (in Russian) | DOI | Zbl

[12] Chuburin Yu.P., Tinyukova T.S., “The emergence of bound states in a superconducting gap at the topological insulator edge”, Physics Letters A, 384:27 (2020), 126694 | DOI | MR

[13] Reed M., Simon B., Methods of modern mathematical physics, v. 1, Functional analysis, Elsevier Science, 1978 | MR | MR

[14] Reed M., Simon B., Methods of modern mathematical physics, v. 4, Analysis of operators, Elsevier Science, 1978 | MR | MR

[15] Tinyukova T.S., “Scattering in the case of the discrete Schrödinger operator for intersected quantum wires”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2012, no. 3, 74–84 (in Russian) | Zbl

[16] Miroshnichenko A.E., Flach S., Kivshar Yu.S., “Fano resonances in nanoscale structures”, Reviews of Modern Physics, 82:3 (2010), 2257–2296 | DOI

[17] Lv Y.-N., Liu A.-W., Tan Y., Hu C.-L., Hua T.-P., Zou X.-B., Sun Y.R., Zou C.-L., Guo G.-C., Hu S.-M., “Fano-like resonance due to interference with distant transitions”, Physical Review Letters, 129:16 (2022), 163201 | DOI | MR