Control problem for a parabolic system with disturbances and possible changes in dynamics
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 34-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of control of a parabolic system, which describes the heating of a given number of non-uniform rods, is considered. The control is point heat sources, which are located at the ends of the rods. Some boundary conditions are affected by uncontrolled disturbances. The density functions of the internal heat sources of the rods are not exactly known, but the segments of their change are given. We admit that at some moments of time, changes may occur in the equations describing the dynamics of the controlled system. These moments of time are not known in advance. The goal of choosing the control is to ensure that at a fixed moment of time, the weighted sum of the average temperatures of the rods belongs to a given segment for any admissible realizations of disturbances, unknown functions and moments of change in the dynamics. After the change of variables, this problem is reduced to a one-dimensional control problem with disturbance. Necessary and sufficient termination conditions are found.
Keywords: control, disturbance, parabolic system
@article{IIMI_2024_64_a2,
     author = {I. V. Izmestyev and N. D. Livanov},
     title = {Control problem for a parabolic system with disturbances and possible changes in dynamics},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {34--47},
     publisher = {mathdoc},
     volume = {64},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_64_a2/}
}
TY  - JOUR
AU  - I. V. Izmestyev
AU  - N. D. Livanov
TI  - Control problem for a parabolic system with disturbances and possible changes in dynamics
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 34
EP  - 47
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_64_a2/
LA  - ru
ID  - IIMI_2024_64_a2
ER  - 
%0 Journal Article
%A I. V. Izmestyev
%A N. D. Livanov
%T Control problem for a parabolic system with disturbances and possible changes in dynamics
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 34-47
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_64_a2/
%G ru
%F IIMI_2024_64_a2
I. V. Izmestyev; N. D. Livanov. Control problem for a parabolic system with disturbances and possible changes in dynamics. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 64 (2024), pp. 34-47. http://geodesic.mathdoc.fr/item/IIMI_2024_64_a2/

[1] Osipov Iu.S., “Position control in parabolic systems”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 187–193 | DOI | MR

[2] Korotkii A.I., Osipov Iu.S., “Approximation in problems of position control of parabolic system”, Journal of Applied Mathematics and Mechanics, 42:4 (1978), 631–637 | DOI | MR

[3] Othata P., Pochai N., “A one-dimensional mathematical simulation to salinity control in a river with a barrage dam using an unconditionally stable explicit finite difference method”, Advances in Difference Equations, 2019, 203 | DOI | MR | Zbl

[4] Maksimov V.I., “On the reconstruction of an input disturbance in a reaction–diffusion system”, Computational Mathematics and Mathematical Physics, 63:6 (2023), 990–1000 | DOI | DOI | MR | Zbl

[5] Martin P., Rosier L., Rouchon P., “On the reachable states for the boundary control of the heat equation”, Applied Mathematics Research eXpress, 2016:2 (2016), 181–216 | DOI | MR | Zbl

[6] Barseghyan V., Solodusha S., “A model of the control problem of the thermal effect of a laser beam on a two-layer biomaterial”, Mathematics, 12:3 (2024), 374 | DOI | MR

[7] Zheng G., Li J., “Stabilization for the multi-dimensional heat equation with disturbance on the controller”, Automatica, 82 (2017), 319–323 | DOI | MR | Zbl

[8] Wang S., Qi J., Diagne M., “Adaptive boundary control of reaction–diffusion PDEs with unknown input delay”, Automatica, 134 (2021), 109909 | DOI | MR | Zbl

[9] Krasovskii N.N., Control of a dynamical system, Nauka, Moscow, 1985 | MR

[10] Osipov Yu.S., Okhezin S.P., “On the theory of differential games in parabolic systems”, Soviet Mathematics. Doklady, 17 (1976), 278–282 | MR | Zbl

[11] Tukhtasinov M., Ibragimov G., Kuchkarova S., Hasim R.M., “Differential games for an infinite 2-systems of differential equations”, Mathematics, 9:13 (2021), 1467 | DOI

[12] Izmest’ev I.V., Ukhobotov V.I., “On one problem of controlling the heating of a rod system under uncertainty”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:4 (2022), 546–556 (in Russian) | DOI | MR | Zbl

[13] Nikol’skii M.S., Peng Zh., “A differential pursuit game with disturbed dynamics”, Differential Equations, 30:11 (1994), 1775–1778 | MR | Zbl

[14] Ukhobotov V.I., “On a control problem under disturbance and a possible breakdown”, Proceedings of the Steklov Institute of Mathematics, 307:1 suppl. (2019), S159–S171 | DOI | DOI | MR | Zbl

[15] Voskolovych O.I., Chikrii K.A., “Failure of control devices under conflict conditions”, Cybernetics and Systems Analysis, 59 (2023), 306–316 | DOI | MR | Zbl

[16] Izmest’ev I.V., Ukhobotov V.I., “Control of a parabolic system with disturbances and a convex goal”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 62 (2023), 30–42 (in Russian) | DOI | MR | Zbl

[17] Ukhobotov V.I., Izmest’ev I.V., “A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:1 (2019), 297–305 (in Russian) | DOI | MR

[18] Filippov A.F., “On certain questions in the theory of optimal control”, Journal of the Society for Industrial and Applied Mathematics Series A Control, 1:1 (1962), 76–84 | DOI | MR | Zbl

[19] Kolmogorov A.N., Fomin S.V., Elements of the theory of functions and functional analysis, Nauka, Moscow, 1972 | MR

[20] Gomoyunov M.I., Serkov D.A., “On guarantee optimization in control problem with finite set of disturbances”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 31:4 (2021), 613–628 | DOI | MR | Zbl