Coalitional Pareto optimal solution of one differential game
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 18-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the differential positional coalitional games with non-transferable payoffs (games without side payments). We believe that the researches of the objection and counter-objection equilibrium for non-cooperative differential games that have been carried out over the last years allow to cover some aspects of non-transferable payoff coalitional games. In this paper we consider the issues of the internal and external stability of coalitions in the class of positional differential games. For a differential positional linear-quadratic six-player game with a two-coalitional structure, the coefficient constraints are obtained which provide an internal and external stability of the coalitional structure.
Keywords: Nash equilibrium, objections and counter-objections equilibrium, Pareto optimality
Mots-clés : coalition
@article{IIMI_2024_63_a1,
     author = {V. I. Zhukovskii and L. V. Zhukovskaya and S. N. Sachkov and E. N. Sachkova},
     title = {Coalitional {Pareto} optimal solution of one differential game},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {18--36},
     publisher = {mathdoc},
     volume = {63},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2024_63_a1/}
}
TY  - JOUR
AU  - V. I. Zhukovskii
AU  - L. V. Zhukovskaya
AU  - S. N. Sachkov
AU  - E. N. Sachkova
TI  - Coalitional Pareto optimal solution of one differential game
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2024
SP  - 18
EP  - 36
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2024_63_a1/
LA  - en
ID  - IIMI_2024_63_a1
ER  - 
%0 Journal Article
%A V. I. Zhukovskii
%A L. V. Zhukovskaya
%A S. N. Sachkov
%A E. N. Sachkova
%T Coalitional Pareto optimal solution of one differential game
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2024
%P 18-36
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2024_63_a1/
%G en
%F IIMI_2024_63_a1
V. I. Zhukovskii; L. V. Zhukovskaya; S. N. Sachkov; E. N. Sachkova. Coalitional Pareto optimal solution of one differential game. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 63 (2024), pp. 18-36. http://geodesic.mathdoc.fr/item/IIMI_2024_63_a1/

[1] Parilina E.M., Petrosyan L.A., “New approach to define characteristic function in stochastic games”, Stability, Control, Differential Games (SCDG2019): Proceedings of the International Conference devoted to the 95th anniversary of Academician N.N. Krasovskii (Yekaterinburg, Russia, 16–20 September 2019), Krasovskii Institute of Mathematics and Mechanics of Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2019, 243–247

[2] Parilina E., Petrosyan L., “On a simplified method of defining characteristic function in stochastic games”, Mathematics, 8:7 (2020), 1135 | DOI

[3] Mazalov V.V., Rettieva A.N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221:12 (2010), 1545–1553 | DOI

[4] Mazalov V., Parilina E., “The Euler-equation approach in average-oriented opinion dynamics”, Mathematics, 8:3 (2020), 355 | DOI

[5] Petrosian O., Tur A., Wang Zeyang, Gao Hongwei, “Cooperative differential games with continuous updating using Hamilton–Jacobi–Bellman equation”, Optimization Methods and Software, 36:6 (2021), 1099–1127 | DOI | MR | Zbl

[6] Petrosian O., Barabanov A., “Looking forward approach in cooperative differential games with uncertain stochastic dynamics”, Journal of Optimization Theory and Applications, 172:1 (2017), 328–347 | DOI | MR | Zbl

[7] Zhukovskii V.I., Zhiteneva J.N., Belskikh J.A., “Pareto equilibrium of objections and counterobjections in a differential game of three persons”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 11:1 (2019), 39–72 (in Russian) | MR | Zbl

[8] Zhukovskiy V.I., Kudryavtsev K.N., Zhukovskaya L.V., Stabulit I.S., “To the individual stability of Pareto equilibrium of objections and counterobjections in a coalition differential positional 3-person game without side payments”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 13:1 (2021), 89–101 (in Russian) | MR | Zbl

[9] Salukvadze M.E., Zhukovskiy V.I., The Berge Equilibrium: A game-theoretic framework for theGolden Rule of Ethics, Birkhäuser, Cham, 2020 | DOI | MR

[10] Zhukovskiy V.I., Salukvadze M.E., The Golden Rule of Ethics: A dynamic game-theoretic framework based on Berge Equilibrium, CRC Press, London, 2021 | DOI | MR | Zbl

[11] Zhukovskii V.I., Tynyanskii N.T., Equilibrium controls of multicriteria dynamical systems, Moscow State University, Moscow, 1984

[12] Zhukovskii V.I., Chikrii A.A., Differential equations. Linear-quadratic differential games, URAIT, Moscow, 2019

[13] Podinovskii V.V., Nogin V.D., Pareto-optimal solutions of multicriteria problems, Fizmatlit, Moscow, 2007

[14] Karlin S., Mathematical methods and theory in games, programming, and economics, Pergamon Press, London–Paris, 1959 | MR

[15] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 https://link.springer.com/book/9781461283188 | MR | MR | Zbl

[16] Voevodin V.V., Kuznetsov Yu.A., Matrices and calculations, Nauka, Moscow, 1984 | MR

[17] Parker W.V., “The characteristic roots of a matrix”, Duke Mathematical Journal, 3:3 (1937), 484–487 | DOI | MR | Zbl