Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2023_62_a2, author = {I. V. Izmestyev and V. I. Ukhobotov}, title = {Control of a parabolic system with disturbances and a convex goal}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {30--42}, publisher = {mathdoc}, volume = {62}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2023_62_a2/} }
TY - JOUR AU - I. V. Izmestyev AU - V. I. Ukhobotov TI - Control of a parabolic system with disturbances and a convex goal JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2023 SP - 30 EP - 42 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2023_62_a2/ LA - ru ID - IIMI_2023_62_a2 ER -
%0 Journal Article %A I. V. Izmestyev %A V. I. Ukhobotov %T Control of a parabolic system with disturbances and a convex goal %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2023 %P 30-42 %V 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2023_62_a2/ %G ru %F IIMI_2023_62_a2
I. V. Izmestyev; V. I. Ukhobotov. Control of a parabolic system with disturbances and a convex goal. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 30-42. http://geodesic.mathdoc.fr/item/IIMI_2023_62_a2/
[1] Osipov Iu.S., “Position control in parabolic systems”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 187–193 | DOI | MR
[2] Korotkii A.I., Osipov Iu.S., “Approximation in problems of position control of parabolic system”, Journal of Applied Mathematics and Mechanics, 42:4 (1978), 631–637 | DOI | MR
[3] Egorov A.I., Optimal control of thermal and diffusion processes, Nauka, Moscow, 1978
[4] Maksimov V.I., “On the reconstruction of an input disturbance in a reaction–diffusion system”, Computational Mathematics and Mathematical Physics, 63:6 (2023), 990–1000 | DOI | MR | Zbl
[5] Casas E., Yong Jiongmin, “Optimal control of a parabolic equation with memory”, ESAIM: Control, Optimisation and Calculus of Variations, 29 (2023), 23 | DOI | MR | Zbl
[6] Lohéac J., “Nonnegative boundary control of 1D linear heat equations”, Vietnam Journal of Mathematics, 49:3 (2021), 845–870 | DOI | MR | Zbl
[7] Barseghyan V., Solodusha S., “The problem of boundary control of the thermal process in a rod”, Mathematics, 11:13 (2023), 2881 | DOI
[8] Dai Jiguo, Ren Beibei, “UDE-based robust boundary control of heat equation with unknown input disturbance”, IFAC-PapersOnLine, 50:1 (2017), 11403–11408 | DOI
[9] Zheng Guojie, Li Jun, “Stabilization for the multi-dimensional heat equation with disturbance on the controller”, Automatica, 82 (2017), 319–323 | DOI | MR | Zbl
[10] Feng Hongyinping, Xu Cheng-Zhong, Yao Peng-Fei, “Observers and disturbance rejection control for a heat equation”, IEEE Transactions on Automatic Control, 65:11 (2020), 4957–4964 | DOI | MR
[11] Wang Shanshan, Qi Jie, Diagne Mamadou, “Adaptive boundary control of reaction–diffusion PDEs with unknown input delay”, Automatica, 134 (2021), 109909 | DOI | MR | Zbl
[12] Krasovskii N.N., Control of a dynamical system, Nauka, Moscow, 1985 | MR
[13] Osipov Yu.S., Okhezin S.P., “On the theory of differential games in parabolic systems”, Soviet Mathematics. Doklady, 17 (1976), 278–282 | MR | Zbl | Zbl
[14] Okhezin S.P., “Differential encounter–evasion game for a parabolic system under integral constraints on the player’s controls”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 194–201 | DOI | MR
[15] Vlasenko L.A., Rutkas A.G., Chikrii A.A., “On a differential game in an abstract parabolic system”, Proceedings of the Steklov Institute of Mathematics, 293:suppl. 1 (2016), 254–269 | DOI | MR
[16] Tukhtasinov M., Ibragimov G., Kuchkarova S., Hasim R.M., “Differential games for an infinite 2-systems of differential equations”, Mathematics, 9:13 (2021), 1467 | DOI
[17] Ukhobotov V.I., Izmest’ev I.V., “The problem of controlling the process of heating the rod in the presence of disturbance and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 739–742 | DOI
[18] Izmest’ev I.V., Ukhobotov V.I., “On one problem of controlling the heating of a rod system under uncertainty”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:4 (2022), 546–556 (in Russian) | DOI | MR | Zbl
[19] Ukhobotov V.I., “One type differential games with convex goal”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 16:5 (2010), 196–204 (in Russian)
[20] Nikol’skij M.S., Pang Chg., “A differential pursuit game with a breakdown in the dynamics”, Differential Equations, 30:11 (1994), 1775–1778 | MR | Zbl | Zbl
[21] Ukhobotov V.I., “On a control problem under a disturbance and possible breakdown”, Proceedings of the Steklov Institute of Mathematics, 307:suppl. 1 (2019), 159–171 | DOI | DOI | MR | Zbl
[22] Godunov S.K., Equations of mathematical physics, Nauka, Moscow, 1971 | MR
[23] Ukhobotov V.I., Izmest’ev I.V., “A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:1 (2019), 297–305 (in Russian) | DOI | MR
[24] Pontrjagin L.S., “Linear differential games of pursuit”, Mathematics of the USSR-Sbornik, 40:3 (1981), 285–303 | DOI | MR | Zbl | Zbl
[25] Pshenichnyi B.N., Convex analysis and extremal problems, Nauka, Moscow, 1980 | MR
[26] Petrov N.N., Introduction to convex analysis, Udmurt State University, Izhevsk, 2009