Simultaneous multiple capture in the presence of evader's defenders
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 10-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a conflict-controlled process with the participation of three types of controlled objects: a group of pursuers, an evader, a group of defenders of the evader. Dynamic and inertial capabilities of all controlled objects are the same. The evader and the group of defenders act cooperatively. The group of pursuers is the other side of the conflict. If the positions of the pursuer and the defender of the evader coincide then both players die and cease to participate in the conflict-controlled process. In a conflict controlled process multiple capture of an evader occurs when a given number of pursuers catch the evader, and capture moments may not coincide. If (not necessarily least) capture moments coincide then nonstrict simultaneous multiple capture of the evader occurs. Finally, simultaneous multiple capture of the evader occurs when least capture moments appear identical. We obtain necessary and sufficient conditions for simultaneous multiple capture of the evader in terms of initial positions of the participants and other parameters of the conflict-controlled process.
Keywords: differential games, conflict controlled processes, pursuit, capture, multiple capture, simultaneous multiple capture, evader’s defenders.
Mots-clés : evasion
@article{IIMI_2023_62_a1,
     author = {A. I. Blagodatskikh and A. S. Bannikov},
     title = {Simultaneous multiple capture in the presence of evader's defenders},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {10--29},
     publisher = {mathdoc},
     volume = {62},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_62_a1/}
}
TY  - JOUR
AU  - A. I. Blagodatskikh
AU  - A. S. Bannikov
TI  - Simultaneous multiple capture in the presence of evader's defenders
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 10
EP  - 29
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_62_a1/
LA  - ru
ID  - IIMI_2023_62_a1
ER  - 
%0 Journal Article
%A A. I. Blagodatskikh
%A A. S. Bannikov
%T Simultaneous multiple capture in the presence of evader's defenders
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 10-29
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_62_a1/
%G ru
%F IIMI_2023_62_a1
A. I. Blagodatskikh; A. S. Bannikov. Simultaneous multiple capture in the presence of evader's defenders. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 62 (2023), pp. 10-29. http://geodesic.mathdoc.fr/item/IIMI_2023_62_a1/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | Zbl

[2] Pontryagin L.S., “A linear differential evasion game”, Proceedings of the Steklov Institute of Mathematics, 112 (1971), 27–60 | MR | Zbl

[3] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 https://www.springer.com/gp/book/9781461283188 | MR | MR | Zbl

[4] Petrosyan L.A., Differential games of pursuit, Leningrad State University, Leningrad, 1977

[5] Chernous’ko F.L., Melikyan A.A., Game-theoretic problems of control and search, Nauka, Moscow, 1978 | MR

[6] Petrosyan L.A., ““Life-line” pursuit games with several players”, Izvestiya Akademii Nauk Armyanskoi SSR. Matematika, 1:5 (1966), 331–340 (in Russian) | MR | Zbl

[7] Pshenichnyi B.N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 | DOI | MR | Zbl

[8] Grigorenko N.L., Mathematical methods for control of several dynamic processes, Moscow State University, Moscow, 1990

[9] Chikrii A.A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[10] Petrov N.N., “Multiple capture in Pontryagin’s example with phase constraints”, Journal of Applied Mathematics and Mechanics, 61:5 (1997), 725–732 | DOI | MR | Zbl

[11] Petrov N.N., Solov’eva N.A., “Multiple capture in Pontryagin’s recurrent example with phase constraints”, Proceedings of the Steklov Institute of Mathematics, 293:suppl. 1 (2016), 174–182 | DOI | MR

[12] Petrov N.N., Solov’eva N.A., “Multiple capture in Pontryagin’s recurrent example”, Automation and Remote Control, 77:5 (2016), 855–861 | DOI | MR | Zbl

[13] Petrov N.N., Solov’eva N.A., “A multiple capture of an evader in linear recursive differential games”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 23:1 (2017), 212–218 (in Russian) | DOI | MR

[14] Petrov N.N., Solov’eva N.A., “Multiple capture of a given number of evaders in L.S. Pontryagin’s recurrent example”, Itogi Nauki i Tekhniki. Seriya “Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory”, 186 (2020), 108–115 (in Russian) | DOI

[15] Petrov N.N., Solov’eva N.A., “Problem of multiple capture of given number of evaders in recurrent differential games”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 19:1 (2022), 371–377 | MR | Zbl

[16] Petrov N.N., Narmanov A.Ya., “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 28:2 (2018), 193–198 (in Russian) | DOI | MR | Zbl

[17] Petrov N.N., Narmanov A.Ya., “Multiple capture of a given number of evaders in a problem with fractional derivatives and a simple matrix”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:3 (2019), 188–199 (in Russian) | DOI | MR

[18] Blagodatskikh A.I., Petrov N.N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[19] Blagodatskikh A.I., “Simultaneous multiple capture in a simple pursuit problem”, Journal of Applied Mathematics and Mechanics, 73:1 (2009), 36–40 | DOI | MR | Zbl

[20] Blagodatskikh A.I., “Simultaneous multiple capture of evaders in a simple group pursuit problem”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2012, no. 3, 13–18 (in Russian) | DOI | Zbl

[21] Blagodatskikh A.I., “Simultaneous multiple capture in a conflict-controlled process”, Journal of Applied Mathematics and Mechanics, 77:3 (2013), 314–320 | DOI | MR | Zbl

[22] Blagodatskikh A.I., “Capture of a group of evaders in a conflict-controlled process”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2013, no. 4, 20–26 (in Russian) | DOI | Zbl

[23] Blagodatskikh A.I., “Problems of group pursuit with equal opportunities in a presence of defenders for an evader”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, no. 2(46), 13–20 (in Russian) | Zbl

[24] Blagodatskikh A.I., “Multiple capture of rigidly coordinated evaders”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 26:1 (2016), 46–57 (in Russian) | DOI | MR | Zbl

[25] Blagodatskikh A.I., “A simple group pursuit problem with equal opportunities and the presence of evader’s defenders”, Automation and Remote Control, 77:4 (2016), 716–721 | DOI | MR | Zbl

[26] Blagodatskikh A.I., Petrov N.N., “Simultaneous multiple capture of rigidly coordinated evaders”, Dynamic Games and Applications, 9:3 (2019), 594–613 | DOI | MR | Zbl

[27] Blagodatskikh A.I., “Synchronous implementation of simultaneous multiple captures of evaders”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 61 (2023), 3–26 (in Russian) | DOI | MR | Zbl

[28] Rusnak I., “The lady, the bandits and the body guards — a two team dynamic game”, IFAC Proceedings Volumes, 38:1 (2005), 441–446 | DOI

[29] Garcia E., Casbeer D. W., Pachter M., “Active target defense differential game with a fast defender”, 2015 American Control Conference (ACC), 2015, 3752–3757 | DOI | MR

[30] Kumkov S.S., Patsko V.S., “Attacker-defender-target problem in the framework of space intercept”, Proceedings of the 57th Israel Annual Conference on Aerospace Sciences, 2017

[31] Garcia E., Casbeer D. W., Pachter M., “The complete differential game of active target defense”, Journal of Optimization Theory and Applications, 191 (2021), 675–699 | DOI | MR | Zbl

[32] Demidovich B.P., Lectures on the mathematical stability theory, Nauka, Moscow, 1967 | MR | Zbl