A bottleneck routing problem with a system of priority tasks
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 156-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a minimax routing problem related to visiting megacities under precedence conditions and cost functions with task list dependence. It is supposed that some megacity system requiring visiting above all is selected. For solving, an approach with decomposition into a set of two minimax routing problems is proposed. A two-step widely understood dynamic programming procedure realizing an optimal composition solution is constructed. The above-mentioned optimality is established by theoretical methods. Application of the results obtained is possible under investigation of multi-stage processes connected with regular allocation of resources. Another variant of application concerns the particular case of one-element megacities (i.e., cities) and may be related to the issues of aviation logistics under organization of flights using one tool (airplane or helicopter) under system of tasks on the realization of passing cargo transportation with prioritization of visits realized above all.
Keywords: dynamic programming, precedence conditions.
Mots-clés : route
@article{IIMI_2023_61_a8,
     author = {A. G. Chentsov},
     title = {A bottleneck routing problem with a system of priority tasks},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {156--186},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a8/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - A bottleneck routing problem with a system of priority tasks
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 156
EP  - 186
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a8/
LA  - ru
ID  - IIMI_2023_61_a8
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T A bottleneck routing problem with a system of priority tasks
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 156-186
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a8/
%G ru
%F IIMI_2023_61_a8
A. G. Chentsov. A bottleneck routing problem with a system of priority tasks. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 156-186. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a8/

[1] Chentsov A.G., Chentsov P.A., “Dynamic programming in the routing problem: decomposition variant”, Russian Universities Reports. Mathematics, 27:137 (2022), 95–124 (in Russian) | DOI

[2] Chentsov A.G., Chentsov P.A., “An extremal two-stage routing problem and procedures based on dynamic programming”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 28:2 (2022), 215–248 (in Russian) | DOI | MR

[3] Petunin A.A., Chentsov A.G., Chentsov P.A., Optimal tool routing on CNC sheet cutting machines. Mathematical models and algorithms, Ural Federal University, Yekaterinburg, 2020

[4] Chentsov A.G., Chentsov A.A., “Dynamic programming and questions of solvability of route bottleneck problem with resource constraints”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:4 (2022), 569–592 (in Russian) | DOI | MR

[5] Melamed I.I., Sergeev S.I., Sigal I.Kh., “The traveling salesman problem. I: Theoretical issues”, Automation and Remote Control, 50:9 (1989), 1147–1173 | MR | Zbl

[6] Gutin G., Punnen A.P., The traveling salesman problem and its variations., Springer, New York, 2007 | DOI | MR | Zbl

[7] Cook W.J., In pursuit of the traveling salesman. Mathematics at the limits of computation, Princeton University Press, Princeton, 2012 | MR | Zbl

[8] Gimadi E.Kh., Khachay M.Yu., Extreme problems on sets of permutations, UMC UPI, Yekaterinburg, 2016

[9] Sergeev S.I., “Algorithms for the minimax problem of the traveling salesman. I: An approach based on dynamic programming”, Automation and Remote Control, 56:7 (1995), 1027–1032 | MR | Zbl

[10] Bellman R., “Dynamic programming treatment of the travelling salesman problem”, Journal of the ACM, 9:1 (1962), 61–63 | DOI | MR | Zbl

[11] Held M., Karp R.M., “A dynamic programming approach to sequencing problems”, Journal of the Society for Industrial and Applied Mathematics, 10:1 (1962), 196–210 | DOI | MR | Zbl

[12] Chentsov A.G., Chentsov A.A., “Routing of displacements with dynamic constraints: “bottleneck problem””, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 121–140 (in Russian) | DOI | MR | Zbl

[13] Chentsov A.G., Chentsov A.A., Sesekin A.N., “Dynamic programming in the generalized bottleneck problem and the start point optimization”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:3 (2018), 348–363 (in Russian) | DOI | MR | Zbl

[14] Chentsov A.G., Chentsov A.A., Sesekin A.N., Routing problems with non-additive cost aggregation, LENAND, Moscow, 2021

[15] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967 | MR

[16] Dieudonné J.A., Foundations of modern analysis, Academic Press, New York, 1960 | MR | Zbl

[17] Cormen T.H., Leizerson C.E., Rivest R.L., Introduction to algorithms, MIT Press, Cambridge, 1990 | MR | Zbl

[18] Warga J., Optimal control of differential and functional equations, Academic Press, 1972 | MR | Zbl

[19] Chentsov A.G., Extreme tasks of routing and distribution of tasks: theory questions, Regular and Chaotic Dynamics, Institute of Computer Science, Moscow-Izhevsk, 2008

[20] Lawler E.L., Efficient implementation of dynamic programming algorithms for sequencing problems, Report: BW 106/79, Stichting Mathematisch Centrum, Amsterdam, 1979

[21] Chentsov A.G., Chentsov A.A., “On the question of finding the value of routing problem with constraints”, Journal of Automation and Information Sciences, 48:2 (2016), 11–27 | DOI | MR | MR