Differential game with “lifeline” for Pontryagin's control example
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 94-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this work is to solve one of the main problems of Isaacs, i.e., a game with a “lifeline” for Pontryagin’s control example when both players have the same movement dynamics. To solve this problem, the pursuer is offered a strategy of parallel pursuit (briefly, $\Pi$-strategy), which ensures the fastest convergence of the players and the capture of the evader within a certain closed ball. In addition, for the differential game under consideration, an explicit analytical formula for the players' attainability domain is given and the main lemma is generalized (L.A. Petrosjan's lemma on monotonicity of the players' attainability domain with respect to embedding for a game of simple pursuit). Using this main lemma, we find conditions for the solvability of the game with a “lifeline” for Pontryagin's control example as well. For clarity, at the end of the work, examples are given for some special cases.
Keywords: differential game, pursuit, acceleration, strategy, guaranteed capture time, attainability domain, lifeline.
Mots-clés : evasion
@article{IIMI_2023_61_a5,
     author = {B. T. Samatov and U. B. Soyibboev},
     title = {Differential game with {\textquotedblleft}lifeline{\textquotedblright} for {Pontryagin's} control example},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {94--113},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a5/}
}
TY  - JOUR
AU  - B. T. Samatov
AU  - U. B. Soyibboev
TI  - Differential game with “lifeline” for Pontryagin's control example
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 94
EP  - 113
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a5/
LA  - en
ID  - IIMI_2023_61_a5
ER  - 
%0 Journal Article
%A B. T. Samatov
%A U. B. Soyibboev
%T Differential game with “lifeline” for Pontryagin's control example
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 94-113
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a5/
%G en
%F IIMI_2023_61_a5
B. T. Samatov; U. B. Soyibboev. Differential game with “lifeline” for Pontryagin's control example. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 94-113. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a5/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | MR | Zbl

[2] Pontryagin L.S., Selected works, MAKS Press, Moscow, 2004

[3] Krasovskii N.N., Control by dynamical system. The minimum problem of a guaranteed result, Nauka, Moscow, 1985 | MR | Zbl

[4] Pshenichnyi B.N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 | DOI | MR

[5] Petrosjan L.A., Differential games of pursuit, World Scientific Publishing, Singapore, 1993 | DOI | MR | Zbl

[6] Friedman A., Differential games, Wiley, New York, 1971 | MR | Zbl

[7] Fleming W.H., “The convergence problem for differential games, II”, Advances in game theory, 1964, 195–210 | DOI | MR | Zbl

[8] Bercovitz L.D., “Differential games of generalized pursuit and evasion”, SIAM Journal on Control and Optimization, 24:3 (1986), 361–373 | DOI | MR

[9] Chikrii A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[10] Subbotin A.I., “Generalization of the main equation of differential game theory”, Journal of Optimization Theory and Applications, 43:1 (1984), 103–133 | DOI | MR | Zbl

[11] Satimov N.Yu., Methods of solving pursuit problems in the theory of differential games, National University of Uzbekistan, Tashkent, 2019

[12] Petrov N.N., ““Soft” capture in Pontryagin's example with many participants”, Journal of Applied Mathematics and Mechanics, 67:5 (2003), 671–680 | DOI | MR | Zbl

[13] Azamov A., “On the quality problem for simple pursuit games with constraint”, Serdica. Bulgariacae mathematicae publicationes, 12:1 (1986), 38–43 (in Russian) http://www.math.bas.bg/serdica/1986/1986-038-043.pdf | MR | Zbl

[14] Azamov A.A., Samatov B.T., “The $\Pi$-strategy: Analogies and applications”, Contributions to Game Theory and Management, 4 (2011), 33–46 | MR | Zbl

[15] Azamov A.A., Samatov B.T., $\Pi$-strategy, National University of Uzbekistan, Tashkent, 2000

[16] Samatov B.T., “Problems of group pursuit with integral constraints on controls of the players. I”, Cybernetics and Systems Analysis, 49:5 (2013), 756–767 | DOI | MR | Zbl

[17] Petrov N.N., “Simple group pursuit subject to phase constraints and data delay”, Journal of Computer and Systems Sciences International, 57:1 (2018), 37–42 | DOI | MR | Zbl

[18] Petrov N.N., Narmanov A.Ya., “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 193–198 (in Russian) | DOI | MR | Zbl

[19] Grigorenko N.L., Mathematical methods for controlling several dynamic processes, Moscow State University, Moscow, 1990

[20] Vagin D.A., Petrov N.N., “Pursuit of a group of evaders in the Pontryagin example”, Journal of Applied Mathematics and Mechanics, 68:4 (2004), 555–560 | DOI | MR | Zbl

[21] Kornev D.V., Lukoyanov N.Yu., “On a minimax control problem for a positional functional under geometric and integral constraints on control actions”, Proceedings of the Steklov Institute of Mathematics, 293, suppl. 1 (2016), 85–100 | DOI | MR

[22] Ibragimov G., Ferrara M., Ruziboev M., Pansera B.A., “Linear evasion differential game of one evader and several pursuers with integral constraints”, International Journal of Game Theory, 50:3 (2021), 729–750 | DOI | MR | Zbl

[23] Ibragimov G.I., “The optimal pursuit problem reduced to an infinite system of differential equations”, Journal of Applied Mathematics and Mechanics, 77:5 (2013), 470–476 | DOI | MR | Zbl

[24] Samatov B.T., “On a pursuit-evasion problem under a linear change of the pursuer resource”, Siberian Advances in Mathematics, 23:4 (2013), 294–302 | DOI | MR | Zbl

[25] Samatov B.T., “The pursuit-evasion problem under integral-geometric constraints on pursuer controls”, Automation and Remote Control, 74:7 (2013), 1072–1081 | DOI | MR | Zbl

[26] Bannikov A.S., “Some non-stationary problems of group pursuit”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2013, no. 1(41), 3–46 (in Russian) | Zbl

[27] Bannikov A.S., Petrov N.N., “On a nonstationary problem of group pursuit”, Proceedings of the Steklov Institute of Mathematics, 271, suppl. 1 (2010), 41–52 | DOI | MR | Zbl

[28] Samatov B.T., Ibragimov G., Khodjibayeva I.V., “Pursuit-evasion differential games with the Grönwall type constraints on controls”, Ural Mathematical Journal, 6:2 (2020), 95-107 | DOI | MR | Zbl

[29] Yuldashev T.K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii Journal of Mathematics, 41:1 (2020), 124–136 | DOI | MR | Zbl

[30] Vassilina G.K., “Optimal control problem of stochastic systems”, Lobachevskii Journal of Mathematics, 42:3 (2021), 641–648 | DOI | MR | Zbl

[31] Ushakov V.N., Ershov A.A., Ushakov A.V., Kuvshinov O.A., “Control system depending on a parameter”, Ural Mathematical Journal, 7:1 (2021), 120–159 | DOI | MR | Zbl

[32] Filippova T.F., “Estimates of reachable sets for systems with impulsive control, uncertainty and nonlinearity”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Ser. Matematika, 19 (2017), 205–216 (in Russian) | DOI | Zbl

[33] Munts N.V., Kumkov S.S., “Numerical method for solving time-optimal differential games with lifeline”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 10:3 (2018), 48–75 (in Russian) | Zbl

[34] Munts N.V., Kumkov S.S., “On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline”, Proceedings of the Steklov Institute of Mathematics, 305, suppl. 1 (2019), S125–S139 | DOI | DOI | MR | Zbl

[35] Samatov B.T., Soyibboev U.B., “Differential game with a lifeline for the inertial movements of players”, Ural Mathematical Journal, 7:2 (2021), 94–109 | DOI | MR | Zbl

[36] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimal control, Nauka, Moscow, 1979 | MR

[37] Blagodatskikh V.I., Introduction to optimal control (linear theory), Vysshaya Shkola, Moscow, 2001