Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2023_61_a4, author = {P. D. Lebedev and O. A. Kuvshinov}, title = {Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {76--93}, publisher = {mathdoc}, volume = {61}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a4/} }
TY - JOUR AU - P. D. Lebedev AU - O. A. Kuvshinov TI - Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2023 SP - 76 EP - 93 VL - 61 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a4/ LA - ru ID - IIMI_2023_61_a4 ER -
%0 Journal Article %A P. D. Lebedev %A O. A. Kuvshinov %T Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2023 %P 76-93 %V 61 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a4/ %G ru %F IIMI_2023_61_a4
P. D. Lebedev; O. A. Kuvshinov. Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 76-93. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a4/
[1] Krasovskii N.N., Some problems of the theory of stability of motion, Fizmatgiz, Moscow, 1959
[2] Krasovskii N.N., Subbotin A.I., Positional differential games, Fizmatlit, Moscow, 1974 | MR
[3] Kazakov A.L., Lempert A.A., Bukharov D.S., “On segmenting logistical zones for servicing continuously developed consumers”, Automation and Remote Control, 74:6 (2013), 968–977 | DOI | MR | Zbl
[4] Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, Springer, New York, 1988 | DOI | MR | MR | Zbl
[5] Tóth L.F., Lagerungen in der Ebene auf der Kugel und im Raum, Springer-Verlag, Berlin, 1953 https://archive.org/details/lagerungenindere0000feje | MR | Zbl
[6] Ushakov V.N., Lebedev P.D., “Algorithms of optimal set covering on the planar $\mathbb{R}^{2}$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:2 (2016), 258–270 (in Russian) | DOI | MR | Zbl
[7] Lebedev P.D., Lempert A.A., Kazakov A.L., “Algorithms of optimal covering of 2D sets with dynamical metrics”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 60 (2022), 58–72 (in Russian) | DOI | MR | Zbl
[8] Ushakov V.N., Lebedev P.D., Lavrov N.G., “Algorithms of optimal packing construction in ellipse”, Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 10:3 (2017), 67–79 (in Russian) | DOI | Zbl
[9] Dorninger D., “Thinnest covering of the Euclidean plane with incongruent circles”, Analysis and Geometry in Metric Spaces, 5:1 (2017), 40–46 | DOI | MR | Zbl
[10] Prosanov R., “On a relation between packing and covering densities of convex bodies”, Discrete and Computational Geometry, 65:4 (2021), 1028–1037 | DOI | MR | Zbl
[11] Bánhelyi B., Palatinus E, Lévai B.L., “Optimal circle covering problems and their applications”, Central European Journal of Operations Research, 23:4 (2015), 815–832 | DOI | MR
[12] Nasab H.H., Tavana M., Yousefi M., “A new heuristic algorithm for the planar minimum covering circle problem”, Production and Manufacturing Research, 2:1 (2014), 142–155 | DOI
[13] Birgin E.G., Gómez W., Haeser G., Mito L.M., Santos D.O., “An augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem”, Computational and Applied Mathematics, 39:1 (2020), 10 | DOI | MR | Zbl
[14] Birgin E.G., Laurain A., Massambone R., Santana A.G., “A shape optimization approach to the problem of covering a two-dimensional region with minimum-radius identical balls”, SIAM Journal on Scientific Computing, 43:3 (2021), A2047–A2078 | DOI | MR | Zbl
[15] Zong Chuanming, “Packing, covering and tiling in two-dimensional spaces”, Expositiones Mathematicae, 32:4 (2014), 297–364 | DOI | MR | Zbl
[16] Klyuev L., [Electronic resource] (in Russian) (29.01.2023) https://habr.com/ru/company/yandex/blog/522900/
[17] Sukharev A.G., Timokhov A.V., Fedorov V.V., Optimization methods: textbook and workshop for undergraduate and graduate students, Yurait, Moscow, 2014
[18] Ushakov V.N., Lakhtin A.S., Lebedev P.D., “Optimization of the Hausdorff distance between sets in Euclidean space”, Proceedings of the Steklov Institute of Mathematics, 291, suppl. 1 (2015), 222–238 | DOI | MR
[19] Danilov D.I., Lakhtin A.S., “Optimization of the algorithm for determining the Hausdorff distance for convex polygons”, Ural Mathematical Journal, 4:1 (2018), 14–23 | DOI | MR | Zbl
[20] Garkavi A.L., “On the Chebyshev center and convex hull of a set”, Uspekhi Matematicheskikh Nauk, 19:6(120) (1964), 139–145 (in Russian) | MR | Zbl
[21] Chen Ke, Giblin P.J., Irving A., Mathematical explorations with MATLAB, Cambridge University Press, Cambridge, 1999 https://archive.org/details/mathematicalexpl0000chen
[22] Kuvshinov O.A., “About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 60 (2022), 34–57 (in Russian) | DOI | MR | Zbl
[23] Glazyrin A., “Covering a ball by smaller balls”, Discrete and Computational Geometry, 62:4 (2019), 781–787 | DOI | MR | Zbl