On a class of Besicovitch almost periodic type selections of multivalued maps
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 57-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ${\mathcal B}$ be a Banach space and let ${\mathcal M}^p({\mathbb R};{\mathcal B})$, $p\geqslant 1$, be the Marcinkiewicz space with a seminorm $\| \cdot \| _{{\mathcal M}^p}$. By $\widetilde {\mathfrak B}^p_c({\mathbb R};{\mathcal B})$ we denote the set of functions ${\mathcal F}\in {\mathcal M}^p({\mathbb R};{\mathcal B})$ that satisfy the following three conditions: (1) $\| {\mathcal F}(\cdot )-{\mathcal F}(\cdot +\tau )\| _{{\mathcal M}^p}\to 0$ as $\tau \to 0$, (2) for every $\varepsilon >0$ the set of ($\varepsilon ,\| \cdot \| _{{\mathcal M}^p}$)-almost periods of the function ${\mathcal F}$ is relatively dense, (3) for every $\varepsilon >0$ there exists a set $X(\varepsilon )\subseteq {\mathbb R}$ such that $\| \chi _{X(\varepsilon )}\| _{{\mathcal M}^1({\mathbb R};{\mathbb R})}\varepsilon $ and the set $\{ {\mathcal F}(t):t\in {\mathbb R}\, \backslash \, X(\varepsilon )\} $ has a finite $\varepsilon $-net. Let $\widetilde {\mathcal M}^{p,\circ }({\mathbb R};{\mathcal B})$ be the set of functions ${\mathcal F}\in {\mathcal M}^p({\mathbb R};{\mathcal B})$ that satisfy the condition (3) and the following condition: for any $\varepsilon >0$ there is a number $\delta >0$ such that the estimate $\| \chi _X{\mathcal F}\| _{{\mathcal M}^p}\varepsilon $ is fulfilled for all sets $X\subseteq {\mathbb R}$ with $\| \chi _X\| _{{\mathcal M}^1({\mathbb R};{\mathbb R})}\delta $. The sets $\widetilde {\mathfrak B}^p_c({\mathbb R};U)$ and $\widetilde {\mathcal M}^{p,\circ }({\mathbb R};U)$ for a complete metric space $(U,\rho )$ are defined analogously. By ${\mathrm {cl}}\, U$ denote the metric space of nonempty, closed, and bounded subsets of the space $(U,\rho )$ with Hausdorff metrics. In the paper, in particular, for any $F\in \widetilde {\mathfrak B}^p_c({\mathbb R};{\mathrm {cl}}\, U)$, $p\geqslant 1$, and $u\in U$, $\varepsilon >0$, we prove under the condition $\rho (u,F(\cdot ))\in \widetilde {\mathcal M}^{p,\circ }({\mathbb R};{\mathbb R})$ the existence of a function ${\mathcal F}\in \widetilde {\mathfrak B}^p_c({\mathbb R};U)\cap \widetilde {\mathcal M}^{p,\circ }({\mathbb R};U)$ such that ${\mathcal F}(t)\in F(t)$ and $\rho (u,{\mathcal F}(t))\varepsilon +\rho (u,F(t))$ for almost every $t\in {\mathbb R}$.
Keywords: Besicovitch almost periodic type functions, selections, multivalued maps.
@article{IIMI_2023_61_a3,
     author = {L. I. Danilov},
     title = {On a class of {Besicovitch} almost periodic type selections of multivalued maps},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {57--75},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a3/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On a class of Besicovitch almost periodic type selections of multivalued maps
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 57
EP  - 75
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a3/
LA  - ru
ID  - IIMI_2023_61_a3
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On a class of Besicovitch almost periodic type selections of multivalued maps
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 57-75
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a3/
%G ru
%F IIMI_2023_61_a3
L. I. Danilov. On a class of Besicovitch almost periodic type selections of multivalued maps. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 57-75. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a3/

[1] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential inclusions and optimal control. Lecture Notes in Nonlinear Anal., v. 2, eds. Andres J., Górniewicz L., Nistri P., Juliusz Schauder Center for Nonlinear Studies, Toruń, 1998, 19–32 | Zbl

[2] Andres J., Bersani A.M., Leśniak K., “On some almost-periodicity problems in various metrics”, Acta Applicandae Mathematica, 65:1–3 (2001), 35–57 | DOI | MR | Zbl

[3] Dolbilov A.M., Shneiberg I.Ya., “Multivalued almost-periodic mappings and selections of them”, Siberian Mathematical Journal, 32:2 (1991), 326–328 | DOI | MR | Zbl

[4] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Mathematica, 76:2 (1983), 163–174 https://eudml.org/doc/218500 | DOI | MR | Zbl

[5] Danilov L.I., “Almost periodic selections of multivalued maps”, Izvestiya Otdela Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 1993, no. 1, 16–78 (in Russian) | Zbl

[6] Danilov L.I., “On Weyl almost periodic selections of multivalued maps”, Journal of Mathematical Analysis and Applications, 316:1 (2006), 110–127 | DOI | MR | Zbl

[7] Kovanko A.S., “Sur la compocité des systèmes de fonctions presque périodiques généralisées de H. Weyl”, Doklady Akademii Nauk SSSR. Novaya Seriya, 43 (1944), 275–276 (in French) | MR | Zbl

[8] Danilov L.I., “On a class of Weyl almost periodic selections of multivalued maps”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2009, no. 1, 24–45 (in Russian) | DOI

[9] Danilov L.I., “On Besicovitch almost periodic selections of multivalued map”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2008, no. 1, 97–120 (in Russian) | DOI

[10] Danilov L.I., “Recurrent and almost recurrent multivalued maps and their selections. III”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 4, 25–52 (in Russian) | DOI | Zbl

[11] Danilov L.I., “Recurrent multivalued maps and their selections”, Systems dynamics and control processes, Proceedings of international conference dedicated to the 90th annivesary of Academician N.N. Krasovskii (Yekaterinburg, Russia, September 15–20, 2014), Educational and Methodological Center of Ural Polytechnic Institute, Yekaterinburg, 2015, 139–146 (in Russian)

[12] Danilov L.I., “Recurrent and almost automorphic selections of multivalued mappings”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, no. 2(46), 45–52 (in Russian) | Zbl

[13] Danilov L.I., “Shift dynamical systems and measurable selectors of multivalued maps”, Sbornik: Mathematics, 209:11 (2018), 1611–1643 | DOI | DOI | MR | Zbl

[14] Levitan B.M., Zhikov V.V., Almost periodic functions and differential equations, Cambridge University Press, Cambridge, 1982 | MR | Zbl

[15] Fink A.M., Almost periodic differential equations, Springer, Berlin–Heidelberg, 1974 | DOI | MR | Zbl

[16] Du Wei-Shih, Kostić M., Pinto M., “Almost periodic functions and their applications: A survey of results and perspectives”, Journal of Mathematics, 2021 (2021), 5536018 | DOI | MR | Zbl

[17] Kostić M., Selected topics in almost periodicity, De Gruyter, Berlin, 2022 | DOI | MR

[18] N'Guérékata G.M., Almost automorphic and almost periodic functions in abstract spaces, Springer, New York, 2001 | DOI | MR

[19] Diagana T., Almost automorphic type and almost periodic type functions in abstract spaces, Springer, Cham, 2013 | DOI | MR | Zbl

[20] Alvarez E., Lizama C., “Weighted pseudo almost periodic solutions to a class of semilinear integro-differential equations in Banach spaces”, Advances in Difference Equations, 2015:1 (2015), 31 | DOI | MR

[21] Kostić M., Almost periodic and almost automorphic type solutions to integro-differential equations, De Gruyter, Berlin, 2019 | DOI | MR

[22] Kostić M., “Quasi-asymptotically almost periodic functions and applications”, Bulletin of the Brazilian Mathematical Society, New Series, 52 (2021), 183–212 | DOI | MR | Zbl

[23] Kostić M., Kumar V., “Remotely $c$-almost periodic type functions in ${\mathbb{R}}^n$”, Archivum Mathematicum, 58:2 (2022), 85–104 | DOI | MR

[24] Ding Hui-Sheng, Long Wei, N'Guérékata G.M., “Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients”, Journal of Computational Analysis and Applications, 13:2 (2011), 231–242 | MR | Zbl

[25] N'Guérékata G.M., Kostić M., “Generalized asymptotically almost periodic and generalized asymptotically almost automorphic solutions of abstract multiterm fractional differential inclusions”, Abstract and Applied Analysis, 2018 (2018), 5947393 | DOI | MR | Zbl

[26] Khalladi M.T., Kostić M., Pinto M., Rahmani A., Velinov D., “Generalized $c$-almost periodic functions and applications”, Bulletin of International Mathematical Virtual Institute, 11:2 (2021), 283-293 | MR | Zbl

[27] Diagana T., Kostić M., “Almost periodic and asymptotically almost periodic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$”, Filomat, 34:5 (2020), 1629–1644 | DOI | MR

[28] Kostić M., “On Besicovitch-Doss almost periodic solutions of abstract Volterra integro-differential equations”, Novi Sad Journal of Mathematics, 47:2 (2017), 187–200 | DOI | MR

[29] Kostić M., “Multi-dimensional Besicovitch almost periodic type functions and applications”, 2022, arXiv: 2202.10521v1 | MR

[30] Kostić M., Du Wei-Shih, Fedorov V.E., “Doss $\rho$-almost periodic type functions in ${\mathbb{R}}^n$”, Mathematics, 9:21 (2021), 2825 | DOI

[31] Andres J., Bersani A.M., Grande R.F., “Hierarchy of almost-periodic function spaces”, Rendiconti di Matematica e delle sue Applicazioni. Serie VII, 26:2 (2006), 121–188 | MR | Zbl

[32] Marcinkiewicz J., “Une remarque sur les espaces de M. Besicovitch”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 208 (1939), 157–159 | Zbl

[33] Bogachev V.I., Smolyanov O.G., Real and functional analysis: a university course, Regular and Chaotic Dynamic, Moscow-Izhevsk, 2011 | MR

[34] Danilov L.I., “On uniform approximation of Weyl and Besicovitch almost periodic functions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2006, no. 1(35), 33–48 (in Russian)

[35] Doss R., “On generalized almost periodic functions”, Annals of Mathematics. Second Series, 59:3 (1954), 477–489 | DOI | MR | Zbl

[36] Doss R., “On generalized almost periodic functions (II)”, Journal of the London Mathematical Society, s1-37:1 (1962), 133–140 | DOI | MR | Zbl