Synchronous implementation of simultaneous multiple captures of evaders
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of pursuit of a group of $m$ evaders $(m\geqslant 1)$ in conflict-controlled processes with equal opportunities is considered. It is said that in the problem of chasing one evader $(m = 1)$, multiple capture occurs if a given number of pursuers catch him, and the moments of capture may not coincide. In the problem of simultaneous multiple capture of one evader, it is required that the moments of capture coincide. Simultaneous multiple capture of the whole group of evaders $(m \geqslant 2)$ occurs if, as a result of pursuit, each evader is repeatedly caught simultaneously, and at the same time. In terms of the initial positions of the participants, necessary and sufficient conditions for the simultaneous multiple capture of the whole group of evaders are obtained.
Keywords: capture, multiple capture, simultaneous multiple capture, pursuit, differential games, conflict controlled processes.
Mots-clés : evasion
@article{IIMI_2023_61_a0,
     author = {A. I. Blagodatskikh},
     title = {Synchronous implementation of simultaneous multiple captures of evaders},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {61},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2023_61_a0/}
}
TY  - JOUR
AU  - A. I. Blagodatskikh
TI  - Synchronous implementation of simultaneous multiple captures of evaders
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2023
SP  - 3
EP  - 26
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2023_61_a0/
LA  - ru
ID  - IIMI_2023_61_a0
ER  - 
%0 Journal Article
%A A. I. Blagodatskikh
%T Synchronous implementation of simultaneous multiple captures of evaders
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2023
%P 3-26
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2023_61_a0/
%G ru
%F IIMI_2023_61_a0
A. I. Blagodatskikh. Synchronous implementation of simultaneous multiple captures of evaders. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 61 (2023), pp. 3-26. http://geodesic.mathdoc.fr/item/IIMI_2023_61_a0/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | MR | Zbl

[2] Pontryagin L.S., “A linear differential evasion game”, Proceedings of the Steklov Institute of Mathematics, 112 (1971), 27–60 (in Russian) | MR | Zbl

[3] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 | MR | MR | Zbl

[4] Petrosyan L.A., Differential games of pursuit, Leningrad State University, Leningrad, 1977

[5] Chernous'ko F.L., Melikyan A.A., Control and search game problems, Nauka, Moscow, 1978 | MR

[6] Petrosyan L.A., ““Life-line” pursuit games with several players”, Izvestiya Akademii Nauk Armyanskoi SSR. Matematika, 1:5 (1966), 331–340 (in Russian) | MR | Zbl

[7] Pshenichnyi B.N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 | DOI | MR | Zbl

[8] Grigorenko N.L., Mathematical methods of control over multiple dynamic processes, Moscow State University, Moscow, 1990

[9] Chikrii A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[10] Petrov N.N., “Multiple capture in Pontryagin's example with phase constraints”, Journal of Applied Mathematics and Mechanics, 61:5 (1997), 725–732 | DOI | MR | Zbl

[11] Petrov N.N., Solov'eva N.A., “Multiple capture in Pontryagin's recurrent example with phase constraints”, Proceedings of the Steklov Institute of Mathematics, 293, suppl. 1 (2016), 174–182 | DOI | MR

[12] Petrov N.N., Solov'eva N.A., “Multiple capture in Pontryagin's recurrent example”, Automation and Remote Control, 77:5 (2016), 855–861 | DOI | MR | Zbl

[13] Petrov N.N., Solov'eva N.A., “A multiple capture of an evader in linear recursive differential games”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 23:1 (2017), 212–218 (in Russian) | DOI | MR

[14] Petrov N.N., Solov'eva N.A., “Multiple capture of a given number of evaders in L.S. Pontryagin's recurrent example”, Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 186 (2020), 108–115 (in Russian) | DOI

[15] Petrov N.N., Solov'eva N.A., “Problem of multiple capture of given number of evaders in recurrent differential games”, Sibirskie Élektronnye Matematicheskie Izvestiya, 19:1 (2022), 371–377 | MR | Zbl

[16] Petrov N.N., Narmanov A.Ya., “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 193–198 (in Russian) | DOI | MR | Zbl

[17] Petrov N.N., Narmanov A.Ya., “Multiple capture of a given number of evaders in a problem with fractional derivatives and a simple matrix”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:3 (2019), 188–199 (in Russian) | DOI

[18] Blagodatskikh A.I., Petrov N.N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[19] Blagodatskikh A.I., “Simultaneous multiple capture in a simple pursuit problem”, Journal of Applied Mathematics and Mechanics, 73:1 (2009), 36–40 | DOI | MR | Zbl

[20] Blagodatskikh A.I., “Simultaneous multiple capture in a conflict-controlled process”, Journal of Applied Mathematics and Mechanics, 77:3 (2013), 314–320 | DOI | MR | Zbl

[21] Blagodatskikh A.I., “Simultaneous multiple capture of evaders in a simple group pursuit problem”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 3, 13–18 (in Russian) | DOI | Zbl

[22] Blagodatskikh A.I., “Capture of a group of evaders in a conflict-controlled process”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 4, 20–26 (in Russian) | DOI | Zbl

[23] Blagodatskikh A.I., “Multiple capture of rigidly coordinated evaders”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, no. 1, 46–57 (in Russian) | DOI | Zbl

[24] Blagodatskikh A.I., Petrov N.N., “Simultaneous multiple capture of rigidly coordinated evaders”, Dynamic Games and Applications, 9:3 (2019), 594–613 | DOI | MR | Zbl

[25] Demidovich B.P., Lectures on the mathematical stability theory, Nauka, Moscow, 1967 | MR